Molecular Dynamics Investigation of Thermophysical Properties of Nickel in liquid phase

Nelson Oyindenyifa Nenuwe, Ezekiel O Agbalagba, Edison A Enaibe

Abstract


The thermophysical properties self-diffusion coefficient and viscosity of face centered cubic nickel (Ni) in liquid phase are studied by the method of molecular dynamics (MD) simulations with the embedded atom method-Finnis-Sinclair potential to model the interactions between the nickel atoms. Results obtained for self-diffusion and viscosity coefficients are compared with recent experimental and theoretical values. We also examined the validity of the Sutherland-Einstein relation between self-diffusion coefficient and viscosity for liquid Ni. Our results for self-diffusion coefficients, though overestimated experimental data, are found to be closer to experimental values than other theoretical results. While the viscosity coefficients underestimated experimental results. The knowledge of these properties has useful applications in the metallurgical industry.

Full Text:

PDF

References


Alemany MMG, Rey C and Gallego LJ. 1998. Computer Simulation study of the Dynamic Properties of liiquid Ni using the Embedded-atom Model. Phys. Rev. B 58(2): 685. doi:10.1103/PhysRevB.58.685.

Alemany MMG, Rey C and Gallego LJ. 1999. Embedded Atom Model Calculations of the Diffusion Coefficient of Ni Impurity in liquid Al. Journal of Chemical Physics 111(19): 9111 - 9112. doi:10.1063/1.480252.

Assael JM, Kalyva EA, Antoniadis DK, Banissh RM, Egry I, Wo J, Kaschnitz E and Wakeham AW. (2012). Reference Data for the Density and Viscosity of liquid Antimony, Bismuth, Lead. Nickel and Silver. High Temperatures-High Pressure 41: 161-184.

Atomistix ToolKit. Quantumwise A/S. 2017.

Banish RM and Lyle BJ. 1999. In-situ diffusivity measurement technique. Adv. Space Res. 24: 1311-1320.

Daw MS and Baskes MI. 1984. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29 (12): 6443 – 6453. doi:10.1103/PhysRevB.29.6443.

Echendu KO, Mbamala CE and Anusionwu CB. 2001. Theoretical Investigation of the Viscosity of some liquid Metals and Alloys. Physics and Chemistry of Liquids 49(2): 247-258. doi:10.1080/00319100903539520.

Einstein A. 1905. On the Motion of Small Particles Suspended in Liquids at Rest required by the Molecular-Kinetic Theory of Heat. Annalen der Physik 17: 549 - 560.

Griebel M, Knapek S and Zumbusch G. 2007. Numerical Simulation in Molecular Dynamics. Springer.

Iida T and Guthrie RIL. 1988. The Physical Properties of Liquid Metals. New York: University Press.

Jess BL and Brian BS. 2000. Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum. Phys. Rev. B 62(2): 14720. doi:10.1103/PhysRevB.62.14720.

Kings HW. 2002. CRC Handbook of Chemistry and Physics. 83: 19.

Lu Y, Cheng H and Cheng M. 2012. A Molecular Dynamics Examination of the Relationship between Self-diffusion and Viscosity in liquid Metals. Journal of Chemical Physics 136: 214505-1 - 214505 -9. doi:10.1063/1.4723683.

Mei J and Davenport, JW. 1990. Molecular-dynamics study of self-diffusion in liquid transition metals. Phys. Rev. B 42(15): 9682 - 9684. doi:10.1103/PhysRevB.42.9682.

Mendelev MI, Kramer MJ, Hao, SG, Ho KM and Wang CZ. 2012. Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy. Philosophical Magazine 92: 4454-4469. doi:10.1080/14786435.2012.712220.

Meyer A. (2010). Self-diffusion in Liquid Copper as seen by Quasielastic Neutron Scattering. Phys. Rev. B 81: 012102-1 - 012102-3. doi:10.1103/PhysRevB.81.012102.

Meyer A. (2015). The Measurement of Self-diffusion Coefficients in liquid Metals with Quasielastic Neutron Scattering. Edited by 01002. EPJ Web of Conferences, 83. doi:10.1051/epjconf/20158301002.

Meyer A, Stuber S, Holland-Moritz D, Heinen O and Unruh T. 2008. Determination of self- diffusion coefficients by Quasielastic Neutron Scattering Measurements of Levitated Ni droplets. Phys. Rev. B 77: 092201-1 - 092201-4. doi:10.1103/PhysRevB.77.0092201.

Morioka S, Xiufang B and Minhua S. 2002. Z. Metallkd 93: 4.

Qian G, Weinert M, Fernando GW and Davenport JW. 1990. First-Principles Calculation of the Activation Energy for Diffusion in Liquid Sodium. Phys. Rev. Lett. 64: 1146. doi:10.1103/PhysRevLett.64.1146.

Rozas RE, Demirag AD, Toledo PG and Horbach J. 2016. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation. J. Chem. Phys. 145: 064515-1 - 064515-11. doi:10.1063/1.4960771.

Sato Y, Sugisaw K, Aoki D and Yamamura T. 2005. Viscosity of Fe-Ni, Fe-Co and Ni-Co binary melts. Measurement Science Technology 16: 363.

Sheng HW, Kramer MJ, Cadien A, Fujita T and Chen MW. 2011. Highly optimized embedded- atom-method potentials for fourteen fcc metals. Phys. Rev. B 83: 134118. doi:10.1103/PhysRevB.83.134118.

Sutherland M. (1905). A Dynamical Theory of Diffusion for Non-electrolytes and the Molecular Mass of albumin. Philosophical Magazine and Journal of Science 6(54): 781 - 785. doi:10.1080/14786440509463331.


Refbacks

  • »
  • »
  • »
  • »


Creative Commons Licence
Ruhuna Journal of Science by University of Ruhuna is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

eISSN: 2536-8400

Print ISSN: 1800-279X (Before 2014)