Microbial solutions for plastic pollutants: Caprolactam, Polyvinyl alcohol, and surgical face masks

Asvini Vetal, Kiran Patil, Apurva Pawar, Gayatri Atre, Aparna Gunjal, Meghmala Sheshrao Waghmode

Abstract


Caprolactam and polyvinyl alcohol (PVA) are plastic pollutants that in excess concentrations affect the environment adversely. The purpose of this study was to identify the microorganisms with the potential to break down biodegradable polyvinyl alcohol synthetic plastic polymer caprolactam, and face masks. Caprolactam and PVA-degrading bacteria were isolated from the soil. The identification of the isolate was done using morphological, biochemical and 16S rRNA sequencing and identified as Pseudomonas aeruginosa. Colorimetric and reverse-phase high-performance liquid chromatography analysis revealed the degradation of 61 and 96 % caprolactam (1%) and PVA (0.1%) respectively by the isolate. The degradative product of caprolactam and polyvinyl alcohol was identified as adipic acid and fumaric acid based on the mass spectroscopic analysis. Field emission scanning electron microscopy of the control and bacterial-treated face mask was carried out to check the degradation potential of the strain. Microbial face mask degradation showed 97.89 % reduction in the diameter of fibers, which proved the potential use of Pseudomonas aeruginosa in the remediation of bioplastic, synthetic and microplastic polluted areas.

Keywords: Caprolactam, face mask, microplastic, polyvinyl alcohol, Pseudomonas

Full Text:

PDF

References


Baxi NN. 2013. Influence of ε-caprolactam on growth and physiology of environmental bacteria. Annals of Microbiology 63:1471-1476. https://doi.org/10.1007/s13213-013-0610-4.

Baxi NN, Shah AK. 2002. ε-Caprolactam-degradation by Alcaligenes faecalis for bioremediation of wastewater of a nylon-6 production plant. Biotechnology Letters 24: 1177-1180.

Bergey DH. 1994. Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins.

Bergmann F. 1952. Colorimetric determination of amides as hydroxamic acids. Analytical Chemistry 24:1367-1369.

Bian H, Cao M, Wen H, Tan Z, Jia S, Cui J. 2019. Biodegradation of polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. International Journal of Biological Macromolecules 124:10-16. https://doi.org/10.1016/j.ijbiomac. 2018.11.204.

Dahlhoff G, Niederer JP, Hoelderich WF. 2001. ϵ-Caprolactam: new by-product free synthesis routes. Catalysis Reviews 43(4): 381-441. https://doi.org/10.1081/CR-120001808.

De-la-Torre GE, Dioses-Salinas DC, Pizarro-Ortega CI, Severini MDF, López ADF, Mansilla R. 2022. Binational survey of personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in coastal environments: abundance, distribution, and analytical characterization. Journal of Hazardous Materials 426: 128070.

https://doi.org/10.1016/j.jhazmat.2021.128070

Esikova TZ, Grishchenkov VG, Boronin AM. 1990. Plasmids controlling biodegradation of epsilon-caprolactam. Mikrobiologiia 59(4): 547-552.

Esikova TZ, Akatova EV, Solyanikova IP. 2023. Epsilon-Caprolactam-and Nylon Oligomer-Degrading Bacterium Brevibacterium epidermidis BS3: Characterization and Potential Use in Bioremediation. Microorganisms 11(2):373.

https://doi.org/10.3390/microorganisms11020373.

Fu Z, ZhangYS, Ji G, Li A. 2023. The interactions between mixed waste from discarded surgical masks and face shields during the degradation in supercritical water. Journal of Hazardous Materials 459:132338. https://doi.org/10.1016/j.jhazmat.2023.132338.

Goodship V, Jacobs DK. 2009. Polyvinyl alcohol: materials, processing, and applications (Vol. 16, No. 12). Shrewsbury, Shropshire: Smithers Rapra Technology.

Halima NB. 2016. Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC advances 6(46): 39823-39832.

https://doi.org/ 10.1039/C6RA05742J; https://cake-kinetics.org/

Kulkarni R, Kanekar P. 1997. Effects of some curing agents on phenotypic stability in Pseudomonas putida degrading ε-caprolactam. World Journal of Microbiology and Biotechnology 14, 255–257 . https://doi.org/10.1023/A:1008898516967.

Linde S, Fisher G . 2004. The caprolactam business must change: new production plants cannot be justified. Fibre Textiles Eastern Europe 12:17–18.

Marušincová H, Husárová L, Růžička J, Ingr M, Navrátil V, Buňková L, Koutny M. 2013. Polyvinyl alcohol biodegradation under denitrifying conditions. International Biodeterioration and Biodegradation 84: 21-28.

https://doi.org/10.1016/j.ibiod.2013.05.023.

Medić A, Stojanović K, Izrael-Živković L, Beškoski V, Lončarević B, Kazazić S, Karadžić I. 2019. A comprehensive study of conditions of the biodegradation of a plastic additive 2, 6-di-tert-butylphenol and proteomic changes in the degrader Pseudomonas aeruginosa RSC advances 9(41): 23696-23710. https://doi.org/10.1039/C9RA04298A.

Mehmood S, Ilyas N, Akhtar N, Chia WY, Shati AA, Alfaifi MY, Sayyed RZ, Pusparizkita YM, Munawaroh HS , Quan PM, and Show PL. 2023. Structural breakdown and phytotoxic assessments of PE degradation through acid hydrolysis, starch addition and Pseudomonas aeruginosa bioremediation. Environmental Research 217:114784.

https://doi.org/10.1016/j.envres.2022.114784

Mehta SK, Panchal PA, Butala BN, Sane SA. 2014. Bacillus cereus Mediated ε-Caprolactam Degradation: An initiative for wastewater treatment of Nylon-6 production plant. Journal of Bioremediation and Biodegradation 5:230. https://doi.org/10.4172/2155-6199.1000230.v

Mohamed H, Shah AM, Nazir Y, Naz T, Nosheen S, Song Y. 2022. Biodegradation of poly (vinyl alcohol) by an orychophragmus rhizosphere associated fungus Penicillium brevicompactum OVR-5, and its proposed PVA biodegradation pathway. World Journal of Microbiology and Biotechnology 38: 1-18.

Mori T, Sakimoto M, Kagi T, Sakai T. 1996. Isolation and characterization of a strain of Bacillus megaterium that degrades poly (vinyl alcohol). Bioscience, Biotechnology, and Biochemistry 60(2): 330-332.

Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sil AK. 2011. Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol. Biodegradation 22: 377-388. https://doi.org/10.1007/s10532-010-9409-1.

Oliveira AM, Patrício-Silva AL, Soares AMVM, Barceló D, Armando D, Rocha-Santos T. 2023. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. Journal of Environmental Chemical Engineering 109308.

https://doi.org/10.1016/j.jece.2023.109308.

Oluwole OA, Oluyege JO, and Olowomofe TO. 2022. Biodegradation of polyethylene based films used in water packaging by dumpsite bacteria. Bioremediation Journal 1-13. https://doi.org/10.1080/10889868.2022.2087591.

Otzen M, Palacio C, Janssen DB. 2018. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics. Applied Microbiology and Biotechnology 102: 6699–6711. https://doi.org/10.1007/s00253-018-9073-7.

Palacio CM, Rozeboom HJ, Lanfranchi E, Meng Q, Otzen M, Janssen DB. 2019. Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism. The FEBS Journal 286 (20): 4086-4102. https://doi.org/10.1111/febs.14950.

Ponamoreva ON, Esikova TZ, Vlasova YA, Baskunov BP, and Alferov VA. 2010. Transformation of low-molecular linear caprolactam oligomers by the caprolactam-degrading bacterium Pseudomonas putida BS394 (pBS268). Microbiology 79: 321-326.

https://doi.org/10.1134/S0026261710030070.

Panov AV, Volkova OV, Puntus IF, Esikova TZ, Kosheleva IA, Boronin AM. 2013. scpA, a new salicylate hydroxylase gene localized in salicylate/caprolactam degradation plasmids. Molecular Biology 47: 105-111. https://doi.org/10.1134/S0026893313010147.

Rajoo S, Ahn JO, Lee HW. 2013. Isolation and characterization of a novel ε-caprolactam-degrading microbe, Acinetobacter calcoaceticus, from industrial wastewater by chemostat-enrichment. Biotechnology Letters 35: 2069-2072.

https://doi.org/10.1007/s10529-013-1307-2.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning, a laboratory manual. New York.

Santarsiero A, Ciambelli P, Donsì G, Quadrini F, Briancesco R, D'Alessandro D, Fara GM. 2020. Face masks: Technical, technological and functional characteristics and hygienic-sanitary aspects related to the use of filtering mask in the community. Annali di igiene: medicina preventiva e di comunita 32(5): 472-520.

Seripracharat C, Sinthuvanich C, Karpkird T. 2022. Cationic cyclodextrin-adamantane poly (vinyl alcohol)-poly (ethylene glycol) assembly for siRNA delivery. Journal of Drug Delivery Science and Technology 68: 103052.

Shama G, Wase DAJ. 1981. The biodegradation of ε-caprolactam and some related compounds: a review. International Biodeterioration Bulletin 17:1–9.

Stoica-Guzun A, Jecu L, Gheorghe A, Raut I, Stroescu M, Ghiurea M, Fruth V. 2011. Biodegradation of poly (vinyl alcohol) and bacterial cellulose composites by Aspergillus niger. Journal of Polymers and the Environment 19: 69-79.

https://doi.org/10.1007/s10924-010-0257-1.

Sun W, Chen L, Wang J. 2017. Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes. Journal of Advanced Oxidation Technologies 20(2): 20170018. https://doi.org/10.1515/jaots-2017-0018.

Tin WWT, Hayashi H, Otomatsu T, Hirose K, Hasegawa K, Shigemori H. 2009. Structure-activity relationships of natural occurring plant growth-inhibiting substance caprolactam and its related compounds. Heterocycles 78(10): 2439.

Vaclavkova T, Ruzicka J, Julinova M, Vicha R, Koutny M. 2007. Novel aspects of symbiotic (polyvinyl alcohol) biodegradation. Applied Microbiology and Biotechnology 76: 911-917.

https://doi.org/10.1007/s00253-007-1062-1.

Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, and Arakawa Y. 2003. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362 (9399): 1888–1893. https://doi.org/10.1016/s0140-6736(03)14959-8

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International journal of systematic and evolutionary microbiology. 67(5):1613. https://doi.org/10.1099/ijsem.0.001755.

Zhao H, Kwak JH, Zhang ZC, Brown HM, Arey BW, Holladay JE. 2007. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis. Carbohydrate polymers 68(2): 235-241. https://doi.org/10.1016/j.carbpol.2006.12.013.


Refbacks

  • There are currently no refbacks.


Creative Commons Licence
Ruhuna Journal of Science by University of Ruhuna is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

eISSN: 2536-8400

Print ISSN: 1800-279X (Before 2014)