Machine learning approaches for forecasting inflation: empirical evidence from Sri Lanka
Abstract
Keywords: Cross-Validation, Hyper-parameter, Inflation Forecasting, Machine Learning Models.
Full Text:
PDFReferences
Atkeson A, Ohanian LE. 2001. Are Phillips curves useful for forecasting inflation? Quarterly Review 25(1): 2-11.
Armstrong JS, Collopy F. 1992. Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting 8(1): 69-80.
Bandara R. 2011. The Determinants of Inflation in Sri Lanka: An Application of the Vector Autoregression Model. South Asia Economic Journal 12(2): 271-286.
Bergmeir C, Benítez J. 2012. On the use of cross-validation for time series predictor evaluation. Information Sciences 191: 192-213.
Cristadoro R, Mario F, Reichlin L, Veronese G. 2005. A core inflation indicator for euro area. Journal of Money, Credit and Banking 37(3): 539-560.
Cutler A, Cutler D, Stevens JR. 2012. Ensemble Machine Learning: Methods and Applications. New York: Springer.
Goodhart C, Hofmann B. 2000. Do asset prices help to predict consumer price inflation? The Manchester School 68(s1):122-140:55-67.
Granger C, Jeon Y. 2004. Thick modeling. Economic Modelling 21(2): 323-343.
Hoerl AE, Kennard RW. 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12(1).
Hyndman RJ, Koehler AB. 2006. Another look at measures of forecast accuracy. International Journal of Forecasting 22(4): 679-688.
Inoue A, Kilian L. 2006. On the selection of forecasting models. Journal of Econometrics 137(2): 273-306.
Jere S, Mubita S. 2016. Forecasting Inflation Rate of Zambia Using Holt’s Exponential Smoothing. Open Journal of Statistics 6(2): 363-372.
Jesmy A. 2010. Estimation of future inflation in Sri Lanka using ARIMA model. Kalam 5(1): 21-27.
Marcellino M. 2002. Forecast Pooling for Short Time Series of Macroeconomic Variables. IGIER Innocenzo Gasparini Institute for Economic Research :Working Paper No 213.
Marcellino M, Stock J H, Watson M W. 2000. A Dynamic Factor and Neural Networks Analysis of the Co-movement of Public Revenues in the EMU. Italian Economic Journal 8(2): 289-338.
Ogutu J, Schulz S, Torben P. 2012. Genomic selection using regularized linear regression models: Ridge regression, lasso, elastic net and their extensions. BMC Proceedings 6:10.
Smola AJ, Schölkopf B. 2003. A tutorial on support vector regression. Statistics and Computing 14(3): 199-222.
Stock JH, Watson MW. 1999. Forecasting inflation using a new index of aggregate activity. Journal of Monetary Economics 44(2): 293-335.
Tradingview. 2023. Sri Lanka Inflation Rate YoY. SL: Trading View.
Trevor H, Robert T, Jerome F. 2009. The Elements of Statistical Learning. 2 ed. New York: Springer.
Ulke V, Sahin A, Subasi A. 2018. Comparison of Time Series and Machine Learning Models for Inflation Forecasting: Empirical Evidence from the US. Neural Computing and Applications 30(1): 1519-1527.
Wickham H. 2016. ggplot2: Elegant graphics for data analysis. 2 ed. Melbourne: Springer.
Wright JH. 2003. Forecasting U.S. Inflation by Bayesian Model Averaging. International Finance Discussion Paper 9: 1-33.
Refbacks
- There are currently no refbacks.
Ruhuna Journal of Science by University of Ruhuna is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
eISSN: 2536-8400
Print ISSN: 1800-279X (Before 2014)