Elastic and mechanical properties of cubic metal arsenides (Ga, In and Al) under high-pressure: a simulation study

Nenuwe Oyindenyifa Nelson, Azi O. Judith

Abstract


Semiconducting materials have played an important role in modern
technological age. Group III-V materials have attracted much attention in electronic industry due to their structural, mechanical, electronic and thermodynamic properties predicted by calculations. This paper simulated the effect of pressure within the range of 0-100 GPa on the elastic constants and other related parameters, such as Young’s, bulk and shear moduli, Pugh ratio, Poisson ratio, anisotropy factor, degree of anisotropy and Kleinman parameter for gallium arsenide (GaAs), indium arsenide (InAs) and aluminum arsenide (AlAs) materials, using the Tersoff classical potential within ATK-force field. Results showed that, increase in pressure enhanced the ductility of GaAs and InAs within the entire pressure domain, and between 10-40 GPa for AlAs material. AlAs was found to be brittle under 50-90 GPa, and unstable at 100 GPa. This may be due to occurrence of phase transition at these pressures. The obtained results at zero pressure are consistent with available experimental and theoretical data in literature.
Keywords: Elastic constants, ductility, gallium arsenide, high pressure, indium arsenide.

Full Text:

PDF

References


Atomistix ToolKit 2017.2. Quantumwise A/S, www.quantumwise.com

Bensalem S, Chegaar M, Maouche D, Bouhemadou A. 2014. Theoretical study of structural, elastic and thermodynamic properties of CZTX (X=S and Se) alloys. Journal of Alloys and Compounds 589: 137-142. doi.org/10.1016/j.jallcom.2013.11.113.

Bing L, Rong-Feng L, Yong Y, Xiang-Dong Y. 2010. Characterisation of the high-pressure structural transition and elastic properties in boron arsenic. Chinese Physics B 19 (7): 076201. doi:10.1088/1674-1056/19/7/076201.

Blakemore JS. 1982. Semiconducting and other major properties of gallium arsenide. Journal of Applied Physics 53 (10): R123-R181. doi:10.1063/1.331665

Born M. 1940. On the stability of crystal lattices. I. Mathematical Proceedings of the Cambridge Philosophical Society. 36: 160 – 172. doi:10.1017/S0305004100017138.

Born M, Huang K, Lax M. 1955. Dynamical Theory of Crystal Lattices. American Journal of Physics, 23 (7): 474–474. doi:10.1119/1.1934059.

Cao Y, Zhu J, Liu Y, Nong Z, Lai Z. 2013. First-principles studies of the structural, elastic, electronic and thermal properties of Ni3Si. Computational Materials Science 69: 40-45. doi:10.1016/j.commatsci.2012.11.037

Chetty N, Muoz A, Martin RM. 1989. First-principles calculation of the elastic constants of AlAs. Physical Review B 40 (17): 11934-11936. doi:10.1103/physrevb.40.11934.

Chun-Lei W, Ben-Hai Y, Hai-Liang H, Dong C, Hai-Bin S. 2009. First principles study on the elastic and thermodynamic properties of TiB2 crystal under high temperature. Chinese Physics B 18 (3): 1248.

Feng L, Li N, Yang M, Liu Z. 2014. Effect of pressure on elastic, mechanical and electronic properties of WSe2: A first-principles study. Materials Research Bulletin, 50: 503–508. doi:10.1016/j.materresbull.2013.11.016.

Gehrsitz S, Sigg H, Herres N, Bachem K, Köhler K, Reinhart FK. 1999. Compositional dependence of the elastic constants and the lattice parameter of AlxGa1−xAs. Physical Review B 60 (16): 11601–11610. doi:10.1103/physrevb.60.11601.

Guemou M, Abdiche A, Riane R, Khenata R. 2014. Ab initio study of the structural, electronic, and optical properties of BAs and BN compounds and BNxAs1−x alloys. Physica B: Condensed Matter 436: 33–40. doi:10.1016/j.physb.2013.11.030.

Güler E, Güler M. 2015. Elastic and mechanical properties of hexagonal diamond under pressure. Applied Physics A 11 (2): 721–726. doi:10.1007/s00339-015-9020-8.

Guler M, Guler E. 2014. High pressure phase transition and elastic behavior of europium oxide. Journal of Optoelectronic and Advanced Materials 16 (11-12): 1322-1327.

Güler E, Güler M. 2014. Phase transition and elasticity of gallium arsenide under pressure. Materials Research 17 (5): 1268–1272. doi:10.1590/1516-1439.272414.

Greaves GN, Greer AL, Lakes RS, Rouxel T. 2011. Poisson’s ratio and modern materials. Nature Materials 10 (11): 823–837. doi:10.1038/nmat3134.

Harrison AW. 1989. Electronic Structure and Properties of Solids, New York: Dover.

Hong-Lin C, Xiang-Rong C, Guang-Fu J, Dong-Qing W. 2008. Structures and Phase Transition of GaAs under Pressure. Chinese Physics Letters 25 (6): 2169–2172. doi:10.1088/0256-307x/25/6/067.

Jun Z, Jing-Xin Y, Yan-Ju W, Xiang-Rong C, Fu-Qian J. 2008. First-principles calculations for elastic properties of rutile TiO2 under pressure. Chinese Physics B 17(6): 2216-2221.

Kabita K, Jameson M, Sharma BI, Brojen RK, Thapa RK. 2016. A detailed first principles study on the structural, elastic, and electronic properties of indium arsenide (InAs) under induced pressure. Canadian Journal of Physics 94 (3): 254–261. doi:10.1139/cjp-2015-0275.

Li X-X, Tao X-M, Chen H-M, Ouyang Y-F, Du Y. 2013. The pressure dependences of elastic and lattice dynamic properties of AlAs from ab initio calculations. Chinese Physics B 22 (2): 026201. doi:10.1088/1674-1056/22/2/026201.

Liu CG, Lu WZ, Klein MB. 1995. Pressure-induced phase transformations in AlAs: Comparison between ab initio theory and experiment. Physical Review B 51: 5678. doi: 10.1103/PhysRevB.51.5678.

Louail L, Maouche D, Hachemi A. 2006. Elastic properties of InAs under pressure up to 18 GPa. Materials Letters 60 (27): 3269–3271. doi:10.1016/j.matlet.2006.03.011.

Mouhat F, Coudert F-X. 2014. Necessary and sufficient elastic stability conditions in various crystal systems. Physical Review B 90 (22): 4104. doi:10.1103/physrevb.90.224104.

Na-Na L, Ren-Bo S, Da-Wei D. 2009. Elastic constants and thermodynamic properties of Mg2SixSn1-x from first-principles calculations. Chinese Physics B 18 (5): 1979.

Pokluda J, Černý M, Šob M, Umeno Y. 2015. Ab initio calculations of mechanical properties: Methods and applications. Progress in Materials Science, 73: 127-158. doi: 10.1016/j.pmatsci.2015.04.001.

Pugh SF. 1954. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine and Journal of Science 45 (367): 823–843. doi:10.1080/14786440808520496.

Rahmati A, Ghoohestani M, Badehian H, Baizaee M. 2014. Ab. initio study of the structural, elastic, electronic and optical properties of Cu3N. Materials Research 17 (2): 303-310. doi: 10.1590/s1516-14392014005000039 .

Varshney D, Joshi G, Varshney M, Shriya S. 2010. Pressure dependent elastic and structural (B3–B1) properties of Ga based monopnictides. Journal of Alloys and Compounds 495 (1): 23–32. doi:10.1016/j.jallcom.2010.01.077.

Venkateswaran UD, Cui LJ, Weinstein BA, Chambers FA. 1992. Forward and reverse high-pressure transitions in bulklike AlAs and GaAs epilayers. Physical Review B 45(16): 9237–9247. doi:10.1103/physrevb.45.9237.

Wang S, Li, J-X, Du Y-L, Cui C. 2014. First-principles study on structural, electronic and elastic properties of graphene-like hexagonal Ti2C monolayer. Computational Materials Science, 83: 290–293. doi:10.1016/j.commatsci.2013.11.025.

Zi-Jiang L, Jian-Hong Q, Yuan G, Qi-Feng C, Ling-Cang C, Xiang-Dong Y. 2007. Thermoelasticity of CaO from first principles. Chinese Physics 16 (2): 499-505. doi: 10.1088/1009-1963/16/2/035.


Refbacks

  • There are currently no refbacks.


Creative Commons Licence
Ruhuna Journal of Science by University of Ruhuna is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

eISSN: 2536-8400

Print ISSN: 1800-279X (Before 2014)