Morphology and optical properties of CuAlS2 crystals prepared using the solid-phase Al and S precursors

John Damisa, Boluwatife olofinjana, Osarodion Ebomwonyi, Marcus Eleruja, Samuel Azi

Abstract


Copper dithiocarbamate and aluminium dithiocarbamate were prepared and then characterized by infrared spectroscopy. The combination of the prepared precursors in different ratios was deposited on glass substrates using metal-organic chemical vapour deposition (MOCVD) technique at 450oC through the pyrolysis of the precursors to yield Cu-Al-S thin films. Compositional, morphological, structural and optical characterizations were then carried out. The compositional analysis revealed that the ratio of Cu to Al in the precursor is not preserved in the films. Morphological study showed that the films are polycrystalline in nature whose homogeneity and grain size distribution decrease with a decrease in Al content of the films. The crystallinity of the films was further revealed from the PXRD results with the formation of the Cu-Al-S crystal structure as the Al content increases in the precursor. The energy gap obtained falls between 2.63 and 2.75 eV which decreases as the Al content in the films decreases. Optical constants such as refractive index and extinction coefficient exhibit a decreasing trend as the Al content in the film decreases.

Keywords: Energy gap, infrared spectroscopy, MOCVD, semiconductors, thin film.

Full Text:

PDF

References


Abaab M, Bouazzi AS, Rezig B. 2000. Competitive CuAlS2 oxygen gas sensor. Microelectronic Engineering 51: 343–348.

https://doi.org/10.1016/S0167-9317(99)00495-5.

Adedeji AV, Egharevba GO, Jeynes C, Ajayi EOB. 2002. Preparation and characterization of pyrolytically deposited (Co-V-O and Cr-V-O). Thin Solid Films 402: 49-54. doi:10.1016/S0040-6090(01)01602-9.

Ahmad SM. 2017. Study of structural and optical properties of quaternary CuxAg1-xAlS2 thin films. International Journal for light and Electron optics 127: 10004-100013. doi:10.1016/j.ijleo. 2016.07.034.

Ajayi OB, Osuntola OK, Ojo IOA, Jeynes C. 1994. Preparation and characterization of MOCVD thin films of cadmium sulphide. Thin Solid Films 248:57-62. https://doi.org/10.1016/0040-6090(94) 90211-9.

Alwan T, Jabbar M. 2011. Structure and optical properties of CuAlS2 thin films prepared via chemical bath deposition. Turkish Journal Physics 34: 107-116. doi:10.3906/fiz-1007-14.

Benchouck K, El Moctar C, Marsillac S, Bernede JC, Pouzet J, Barreau N, Emziane M. 1999. Growth and physicochemical characterization of CuAlTe2 films obtained by reaction, induced by annealing, between Cu/Al/Te/Al/Cu... Al/Cu/Al/Te layers sequentially deposited. Journal of Materials Science 34: 1847-1853. doi:10.1023/A:1004575612586.

Brini R, Schmerber G, Kanzari M, Werckmann J, Rezig B. 2009. Study of the growth of CuAlS2 thin films on oriented silicon (111). Thin Solid Films 517: 2191–2194. doi:10.1016/j.tsf.2008.10.086.

Chaki SH, Deshpande MP, Mahato KS. 2013. Growth and microtopographic study of CuAlS2 single crystals. American Institute of Physics Conference Proceedings 1536: 833–834. doi:10.1063/ 1.4810486.

Damisa J, Olofinjana B, Ebomwonyi O, Bakare F, Azi SO. 2017. Morphological and optical study of thin films of CuAlS2 deposited by metal organic chemical vapour deposition technique. Materials Research Express 4: 086412 (1-10). https://doi.org/10.1088/2053-1591/aa851d.

Duclaux L, Donsanti F, Vidal J, Bouttemy M, Schneider N, Naghavi N. 2015. Simulation and growing study of Cu–Al–S thin films deposited by atomic layer deposition. Thin Solid Films 594: 232–237. https://doi.org/10.1016/j.tsf.2015.06.014.

Eleruja MA, Adedeji AV, Ojo IAO, Djebah A, Osasona O, Aladekomo JB, Ajayi EOB. 1998. Optical characterization of pyrolytically deposited ZnxCd1−xS thin films. Optical Materials 10: 257-263. doi:10.1016/S0925-3467(97)00178-X.

Harbeke G. 1972. Optical properties of semiconductor, Amsterdam: North-Holland Pub.Con.

Hossain MS, Kabir H, Rahman MM, Hasan K, Bashar MS, Rahman M, Gafur MA, Islam S, Amri A, Jiang ZT, Altarawneh M, B.Z. Dlugoggorski BZ. 2017. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications. Applied Surface Science 392: 854-872. https://doi.org/10.1016/j.apsusc.2016.09.095.

Jaffe JE, Zunger A. 1983. Electronic struture of the theory chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2,CuAlSe2 and CuInSe2. Physical Review B 28: 5822-5847. https://doi.org/10.1103/ PhysRevB.28.5822.

KumarK, JariwalaC, PillaiR, ChauhanN, Raole PM. 2015. Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites. American Institute of Physics Conference Proceedings 1675: 020046 (1-4). doi:10.1063/1.4929204.

Miyake H, Yamada M, Sugiyama K. 1995. Vapor phase epitaxy of CuAlS2 on CuGaS2 substrate by the iodine transport method. Journal of Crystal Growth 153: 180-183. doi:10.1016/0022-0248(95)00199-9.

Mujdat C, Saliha I, Yasemin C. 2008. Structural, morphological and optical properties of CuAlS2 films deposited by spray pyrolysis method. Optics Communications281: 1615–1624. doi:10.1016/ j.optcom.2007.11.031.

Olejniček J, Flannery LE, Darveau SA, Exstrom CL, Kment S, Ianno NJ, Soukup RJ. 2011. CuIn1−xAlxS2 thin films prepared by sulfurization of metallic precursors. Journal of Alloys and Compounds 509: 10020– 10024. doi:10.1016/j.jallcom.2011.08.016.

Ongal HC, Dai JY, Hung KC, Chan YC, Ho ST. 2000. Electronic structure of polycrystalline ZnO thin films probed by electron energy loss spectroscopy. Applied Physics Letters 77: 1484-1486. doi:0003-6951/2000/77(10)/1484/3/.

Osasona O, Djebah A, Ojo IAO, Eleruja MA, Adedeji AV, Jeynes C, Ajayi EOB. 1997. Preparation and characterization of MOCVD thin films of zinc sulphide. Optical Materials 7: 109-115. doi:10.1016/S0925-3467(96)00065-1.

Reshak AH, Auluck S. 2008. Electronic properties of chalcopyrite CuAlX2 (X = S, Se, Te) compounds. Solid State Communication 145: 571–6. doi:10.1016/j.ssc.2007.12.034.

Smaili F. 2011. Effect of annealing on the structural and optical properties of CuIn1-xAlxS2 thin films. Materials Sciences and Applications 2: 1212-1218. doi: 10.4236/msa.2011.29164.

Swanepoel R. 1983. Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E 16: 1214-1222.https://doi.org/10.1088/0022-3735/16/12/023.

Tauc J. 1974. Amorphous and liquid semiconductor, London: Plenum. 159.


Refbacks

  • There are currently no refbacks.


Creative Commons Licence
Ruhuna Journal of Science by University of Ruhuna is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

eISSN: 2536-8400

Print ISSN: 1800-279X (Before 2014)