
RUHUNA JOURNAL OF SCIENCE

Vol 7: 12-20, June 2016
ISSN: 1800-279X

12

 Faculty of Science

University of Ruhuna

An approach for line clipping against a convex polyhedron

K. R. Wijeweera
1
, S. R. Kodituwakku

2

1Department of Computer Science, Faculty of Science, University of Ruhuna
2Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya
1, 2Postgraduate Institute of Science, University of Peradeniya

Correspondence: 1krw19870829@gmail.com

Received: 18th October 2015, Revised: 11th June 2016, Accepted: 24th June 2016

Abstract. Line clipping operation is a bottleneck in most of computer

graphics applications. There are situations when millions of line segments

need to be clipped against convex polyhedrons with millions of facets. An

algorithm to clip line segments against a convex polyhedron is proposed in

this work. The salient feature of the proposed algorithm is that it minimizes

the number of computations by ignoring unnecessary intersection

calculations. The other advantage of the proposed algorithm is that it needs

minimum details about the convex polyhedron; the equations of the facets

and the centroid. Therefore, it improves the efficiency of the algorithm. The

line segment may have zero length (a point) or positive length. When line

segment is just a point which is outside with respect to at least one facet, it

should be rejected as the line segment is outside the convex polyhedron.

When the line segment is parallel to a facet and one of its end points is

outside, that line segment is also completely outside and it should also be

rejected. Unless the line segment belongs to none of the above two cases, it

should be pruned against each facet in a certain order. In this case, the

intersection points with only some of the facets need to be computed and

some other intersection calculations can be ignored. If the line segment is

completely outside then it becomes a single point. That means the two end

points coincide. But due to the precision error they do not exactly coincide.

Therefore, approximate equality should be tested. By using this property,

completely outside line segments can be identified. Having two end points

outside does not necessarily keep the line segment completely outside. The

widely used Cyrus Beck algorithm computes all the intersection points with

each facet of the polyhedron while the proposed algorithm successfully

avoids some of the intersection point calculations. In the best case; it is

capable of avoiding all the unnecessary intersection calculations. An

experimental comparison between the Cyrus Beck algorithm and the

proposed algorithm was carried out. Random polyhedrons were created with

different number of facets. Random points were generated and they were

considered as end points of line segments. For a given polyhedron, the

number of clock cycles consumed to clip 10
8
 number of line segments was

computed using the Cyrus Beck algorithm and the proposed algorithm. For a

polyhedron with four vertices, the proposed algorithm is 1.02 times faster

than the Cyrus Beck algorithm. For a polyhedron with nine vertices, the

proposed algorithm is 1.16 times faster than the Cyrus Beck algorithm.

 Wijeweera and Kodituwakku Line clipping against a Convex Polyhedron

Ruhuna Journal of Science 13
Vol 7: 12-20, June 2016

When the number of facets is large, then the performance of the proposed

algorithm is significantly faster since more intersection calculations are

avoided. The Skala algorithm is also an efficient algorithm which requires

the order of facets also as the input to the algorithm. The proposed algorithm

is faster than Skala algorithm when the number of facets of the polyhedron is

less than 100 according to the experimental results. The proposed approach

could be very useful for applications where large number of lines to be

clipped. It can also be applied in linear programming as well since it can be

extended to arbitrary dimensions.

Keywords. Computational Geometry, Convex Analysis, Computer Graphics

Programming, Coordinate Geometry, Linear Programming

1 Introduction

In computer graphics, line clipping is one of the most important operations.

The concept of line clipping is applied in many application areas. If a part of a

given scene needs to be extracted then line clipping is used as a primitive

operation to perform extraction (D. Hearn et al, 1998). Especially in medical

applications certain regions needs to be clipped against polyhedrons (W.

Huang, 2010).

The line clipping process is a bottleneck in many applications. Therefore,

optimizing the performance of line clipping is very important to solve this

problem. When spherical or cylindrical volumes are approximated using

polyhedrons there will be a large number of facets in the resultant polyhedron

(W. Huang, 2010). Then the line segment has lots of intersections with facets

of that polyhedron. Calculation of an intersection point involves a higher

computational cost and it has a significant impact on the performance of a

clipping algorithm. The proposed algorithm uses a mechanism to avoid some

of the intersection calculations. In the best case, it is capable of avoiding all

the unnecessary intersection calculations.

2 Materials and Methods

In this section, the proposed line clipping algorithm is presented. The convex

polyhedron is represented using the set of infinite planes formed by extending

its facets. The number of facets of the convex polyhedron is stored in facets

variables. The equation of a plane in general form is a * x + b * y + c * z + d

= 0 where a, b, c and d are constants. Therefore, the i
th

facet can be

represented as a[i] * x + b[i] * y + c[i] * z + d[i] = 0, where i = 1, 2...,

(number of facets – 1). The line segment in three dimensions can be

represented by its end points. The end points are represented as (x[i], y[i],

z[i]), where i = 0, 1. The coordinates of the Centroid (xc, yc, zc) of the

Wijeweera and Kodituwakku Line Clipping against a Convex Polyhedron

Ruhuna Journal of Science 14
Vol 7: 12-20, June 2016

clipping volume should be provided to the algorithm as an input. When the

polyhedron is convex its Centroid lies inside it.

2.1 Mathematical background of the proposed algorithm

The general equation of a straight line joining the end points (x[0], y[0], z[0])

and (x[1], y[1], z[1]) can be be written as,

(x – x[0])/(x[1] - x[0]) = (y – y[0])/(y[1] - y[0]) = (z – z[0])/(z[1] - z[0]) = t.

This can be rewritten in the following form.

x = x[0] + (x[1] – x[0]) * t;

y = y[0] + (y[1] – y[0]) * t;

z = z[0] + (z[1] – z[0]) * t.

The general equation of the i
th
 facet is a[i] * x + b[i] * y + c[i] * z + d[i] = 0.

The intersection point of the i
th

plane and the given line segment (if exists),

can be calculated as

a[i] * {x[0] + (x[1] – x[0]) * t} + b[i] * {y[0] + (y[1] – y[0]) * t} + c[i] * {

z[0] + (z[1] – z[0]) * t} + d[i] = 0

 a[i] * x[0] + b[i] * y[0] + c[i] * z[0] + d[i] + {(a[i] * x[1] + b[i] * y[1] +

c[i] * z[1]) – (a[i] * x[0] + b[i] * y[0] + c[i] * z[0])} * t = 0

 p[0] + (p[1] – p[0]) * t = 0, where p[0] = a[i] * x[0] + b[i] * y[0] + c[i] *

z[0] + d[i] and p[1] = a[i] * x[1] + b[i] * y[1] + c[i] * z[1] + d[i]

 t = p[0]/(p[0] - p[1])

Let k = a[i] * xc + b[i] * yc + c[i] * zc + d[i].

If (p[i] * k < 0) then the (x[i], y[i], z[i]) is outside the convex polyhedron.

2.2 Pseudo Code of the Proposed Algorithm

FUNCTION: clip(a[], b[], c[], d[], facets, xc, yc, zc, x[], y[], z[])
BEGIN

IF {(x[0] = x[1]) AND (y[0] = y[1]) AND (z[0] = z[1])}

 FOR {i = 0 TO i = facets -1}
 IF {(a[i]*x[0]+b[i]*y[0]+c[i]*z[0]+d[i])*(a[i]*xc+b[i]*yc+c[i]*zc+d[i])<0}

 GOTO line;

 END IF
 END FOR

 SAVE (x[0], y[0], z[0]);

ELSE
 FOR {i = 0 TO i = facets – 1}

 FOR {j = 0 TO j = 1}

 p[j] = a[i] * x[j] + b[i] * y[j] + c[i] * z[j] + d[i];

 END FOR

 k = a[i] * xc + b[i] * yc + c[i] * zc + d[i];
 IF {p[0] = p[1]}

 IF (p[0] * k < 0)

 GOTO line;
 END IF

 Wijeweera and Kodituwakku Line clipping against a Convex Polyhedron

Ruhuna Journal of Science 15
Vol 7: 12-20, June 2016

 ELSE
 t = p[0]/(p[0] - p[1]);

 L = x[1] - x[0]; M = y[1] - y[0]; N = z[1] - z[0];

 x0 = x[0]; y0 = y[0]; z0 = z[0];
 FOR {j = 0 TO j = 1}

 IF {p[j] * k < 0}

 x[j] = x0 + L * t;
 y[j] = y0 + M * t;

 z[j] = z0 + N * t;

 END IF
 END FOR

 END IF

 IF {(abs(x[0]-x[1])<1) AND (abs(y[0]-y[1])<1) AND (abs(z[0]-z[1])<1)}
 GOTO line;

 END IF

 END FOR
 SAVE (x[0], y[0], z[0], x[1], y[1], z[1]);

END IF

line:
END

2.3 Analysis of the Proposed Algorithm

In this section, the line number of the pseudo code (within the parenthesis) is

used for description.

The input line segment can have two possibilities. The line segment can be a

point (Line 3) or a line segment with non-zero length (Line 10). If the line

segment is just a point and it lies outside at least one facet it can be directly

rejected. In this way, the computational cost can be reduced. If the line

segment has a non-zero length then line segment should be pruned against

each facet (Line 11). If the line segment is parallel to a facet then the

intersection point does not exist. When p[0] = p[1] the line segment is parallel

to that facet (Line 16). In such cases, the facet is ignored, if the end points of

the line segment lie inside the facet. And the line segment is ignored, if the

end points lie outside the facet (Line 17 to Line 19).

The positions of end points after the line segment get pruned by each facet is

dynamically calculated (Line 26 to Line 28). If the end points of the line

segment coincides that means the line segment is completely outside with

respect to the corresponding facet (Line 32), the original line segment is

rejected as it is completely outside the clipping volume (S. R. Kodituwakku et

al, 2013). Due to the precision error in computers testing exact equality is

impossible. Therefore, approximate equality is tested. If abs(x[1] – x[0]) < 1

then it is assumed that x[1] = x[0].

3 Results

In order to validate the proposed algorithm, it was experimentally compared

against Cyrus Beck (CS535, 2012) and Skala (V. Skala, 1997) line clipping

Wijeweera and Kodituwakku Line Clipping against a Convex Polyhedron

Ruhuna Journal of Science 16
Vol 7: 12-20, June 2016

algorithms. The three algorithms were implemented using C++ programming

language and following hardware and software resources were used.

Computer: Intel(R) Pentium(R) Dual CPU; E2180 @ 2.00 GHz; 2.00 GHz,

0.98 GB of RAM; IDE: Turbo C++; Version 3.0; Copyright(c) 1990, 1992 by

Borland International, Inc;

Let TCB, TSK and T are the execution times of Cyrus Beck algorithm, Skala

algorithm and the proposed algorithm respectively. Then the coefficients of

efficiency can be defined as; v1 = TCB/T; v2 = TSK/T.

Random polyhedrons were created with different number of facets. The Table

1 shows some of those data. There Pn denotes a random polyhedron with n

number of vertices. Random points were generated and they were considered

as end points of line segment. The line generating space is a cube in which the

volume is twice as that of the given polyhedron. Therefore the interior volume

of the polyhedron is equal to the exterior volume of the polyhedron. The

center of the polyhedron coincides with the center of the cube space. The

purpose is to equally distribute the line segments in the space. For a given

polyhedron, the number of clock cycles consumed to clip 10
8
 number of line

segments was computed. And then corresponding efficiency coefficients v1

and v2 were also computed.

Polyhedron Cyrus Beck Skala Proposed v1 v2

P4 4388 5048 4321 1.0155 1.1682

P5 4821 5492 4511 1.0687 1.2175

P6 5178 5857 4761 1.0875 1.2302

P7 5646 6328 4935 1.1440 1.2823

P8 5905 6556 5144 1.1479 1.2745

P9 6271 6892 5384 1.1647 1.2801

According to the set of polyhedrons shown in Table 1, the proposed algorithm

is faster than both Cyrus Beck and Skala algorithms when line segments are

generated randomly and uniformly in the space.

Depending on the position of line segments, they can be classified into three

groups; line segment is completely outside the polyhedron, line segment is

completely inside the polyhedron, line segment is intersecting the polyhedron.

The experiment was done with the same set of polyhedrons in Table 1 for 10
8

number of random line segments generated outside the polyhedron. The

results are shown in Table 2.

Table 1. Number of clock cycles comparison for uniform line segments

 Wijeweera and Kodituwakku Line clipping against a Convex Polyhedron

Ruhuna Journal of Science 17
Vol 7: 12-20, June 2016

Polyhedron Cyrus Beck Skala Proposed v1 v2

P4 1782 1318 1283 1.3889 1.0273

P5 1971 1431 1657 1.1895 0.8667

P6 2134 1523 1742 1.2250 0.8743

P7 2317 1648 1887 1.2279 0.8733

P8 2415 1702 1971 1.2253 0.8635

P9 2578 1795 2068 1.2466 0.8680

According to the results shown in Table 2, the proposed algorithm is faster

than the Cyrus Beck algorithm and slower than Skala algorithm when line

segments are generated outside the polyhedron.

The experiment was done with the same set of polyhedrons in Table 1 for 10
8

number of random line segments generated inside the polyhedron. The results

are shown in Table 3.

Polyhedron Cyrus Beck Skala Proposed v1 v2

P4 1694 1243 972 1.7428 1.2788

P5 1867 1354 1276 1.4632 1.0611

P6 2032 1429 1361 1.4930 1.0500

P7 2208 1555 1489 1.4829 1.0443

P8 2287 1591 1541 1.4841 1.0324

P9 2453 1691 1629 1.5058 1.0381

According to the experimental results shown in Table 3, the proposed

algorithm is faster than both Cyrus Beck and Skala algorithms when line

segments are generated inside the polyhedron.

The experiment was done with the same set of polyhedrons in Table 1 for 10
8

number of random line segments generated intersecting the polyhedron. The

results are shown in Table 4.

Polyhedron Cyrus Beck Skala Proposed v1 v2

P4 6371 6567 4754 1.3401 1.3814

P5 6888 7142 6038 1.1408 1.1828

P6 7317 7617 6446 1.1351 1.1817

P7 7878 8223 6962 1.1316 1.1811

P8 8191 8527 7215 1.1353 1.1818

P9 8626 8961 7583 1.1375 1.1817

Table 2. Number of clock cycles comparison for outside line segments

Table 3. Number of clock cycles comparison for inside line segments

Table 4. Number of clock cycles comparison for intersecting line segments

Wijeweera and Kodituwakku Line Clipping against a Convex Polyhedron

Ruhuna Journal of Science 18
Vol 7: 12-20, June 2016

According to the experimental results shown in Table 4, the proposed

algorithm is faster than both Cyrus Beck and Skala algorithms when line

segments are generated intersecting the polyhedron.

The results shown in Table1, Table2, Table 3 and Table 4 indicate that the

proposed algorithm is faster than the Cyrus Beck algorithm for any line

segment. And the Skala algorithm is faster than the proposed algorithm only

when the line segment is outside the polyhedron. The results in Table 2 and

Table 3 indicate that the computational cost for clipping a line segment

outside the polyhedron and the computational cost for clipping a line segment

inside the polyhedron are approximately equal. Therefore the line segments

can be divided into two fundamental categories: 0% intersections (line

segment is either completely inside or completely outside the polyhedron) and

100% intersections (line segment is intersecting the polyhedron).

Then the algorithms were compared in order to observe what happens when

the number of facets grows very large. Therefore convex polyhedrons were

generated with N number of triangular facets (Skala, 1997). The number of

clock cycles consumed to clip 10
8
 line segments with 0% intersections was

measured for each polyhedron. The experimental results are shown in Table 5.

N 10 20 50 100 200 500 1000

CB 2751 7638 23831 50115 100852 255178 511887

SK 5805 8557 17720 22615 34841 82209 160752

PP 1902 3809 9515 19024 38052 95092 190192

v1 1.4464 2.0053 2.5046 2.6343 2.6504 2.6835 2.6914

v2 3.0521 2.2465 1.8623 1.1888 0.9156 0.8645 0.8452

The results in Table 5 show that the proposed algorithm is faster than Cyrus

Beck algorithm for a polyhedron with any number of facets when line

segments are generated either completely inside or completely outside the

polyhedron. Also the proposed algorithm is faster than Skala algorithm in this

situation only when the number of facets of the polyhedron is less than 100.

For the same set of polyhedrons in Table 5, the experiment was carried out

when there are 100% intersections. The results are shown in Table 6.

N 10 20 50 100 200 500 1000

CB 3978 9473 24752 50731 102076 258237 516781

SK 16492 19561 28109 30863 42487 90481 160748

PP 2648 4621 9772 19151 38415 96134 191902

v1 1.5023 2.0500 2.5330 2.6490 2.6572 2.6862 2.6929

v2 6.2281 4.2331 2.8765 1.6116 1.1060 0.9412 0.8377

Table 5. 0% intersections

Table 6. 100% intersections

 Wijeweera and Kodituwakku Line clipping against a Convex Polyhedron

Ruhuna Journal of Science 19
Vol 7: 12-20, June 2016

The results in Table 6 show that the proposed algorithm is faster than Cyrus

Beck algorithm for a polyhedron with any number of facets when line

segments are generated intersecting the polyhedron. Also the proposed

algorithm is faster than Skala algorithm in this situation only when the

number of facets of the polyhedron is less than 500.

3 Discussion

The Cyrus Beck algorithm needs to compute all the intersection points with

each facet of the polyhedron (CS 535, 2012). But the proposed algorithm

avoids some of those intersection points depending on the sequence each facet

is met inside the FOR loop. Therefore theoretically the proposed algorithm is

faster. When the number of facets increases the speed of the proposed

algorithm is more significant since the number of avoided intersections points

also increase.

Experimental results shown also suggest that the proposed algorithm is faster.

The required inputs to the proposed algorithm are equations of the facets and

the Centroid of the polyhedron. But for the Cyrus Beck algorithm, it needs

even the vertices of the polyhedron.

The Skala algorithm uses the known order of facets as an extra input. The

proposed algorithm is faster than the Skala algorithm when the number of

facets is less than 100.

The processing power of the CPU has the impact on the number of clock

cycles needed to execute the algorithm. Doubling the processing power of the

CPU will halve the execution time. This happens since all the three algorithms

are sequential. All three algorithms use a single FOR loop to access each

facet. Therefore the computational complexity of the three algorithms is O (N)

where N is the number of facets. The Skala algorithm has the expected

computational complexity O (sqrt (N)) using the known order of facets. The

asymptotic computational cost comparison does not work for this kind of

algorithms since they have equal asymptotic computational cost for larger

values of N. Therefore experimental comparison was used.

4 Conclusion

A novel algorithm to clip line segments against a convex polyhedron was

proposed. The theoretical and experimental analyses proved that the proposed

algorithm is faster than the Cyrus Beck algorithm for a polyhedron with any

number of facets. And also the proposed algorithm is faster than the Skala

Wijeweera and Kodituwakku Line Clipping against a Convex Polyhedron

Ruhuna Journal of Science 20
Vol 7: 12-20, June 2016

algorithm for polyhedrons in which the number of facets is less than 100. The

algorithm can be successfully extended to arbitrary dimensions to clip line

segments against convex polytopes. Then each facet should be represented as

a1x1+a2x2+…+anxn + b = 0.

References

D. Hearn and M. P. Baker (1998), Computer Graphics, C Version, 2nd Edition, Prentice Hall,

Inc., Upper Saddle River, pp. 224-248.

W. Huang (2010), The Line Clipping Algorithm Based on Affine Transformation, Intelligent

Information Management, Volume. 2, pp. 380-385.

S. R. Kodituwakku, K. R. Wijeweera, M. A. P. Chamikara (2013), An Efficient Algorithm for

Line Clipping in Computer Graphics Programming, Ceylon Journal of Science (Physical

Sciences), Volume. 17, pp. 1 – 7.

CS 535 NOTES CYRUS-BECK CLIPPING ALGORITHM,

http://cs1.bradley.edu/public/jcm/cs535CyrusBeck.html; accessed on 20 July 2012.

V. Skala (1997), A Fast Algorithm for Line Clipping by Convex Polyhedron in E3, Computers

& Graphics, Pergamon Press, Vol. 21, No. 2, pp. 209-214.

