

Growth and yield of turmeric (*Curcuma longa* L.) cultivated under different mulching materials

W.M.C.S. Jayaweera¹, S.R. Amarasinghe² and A.L. Ranawake^{3*}

¹ Faculty of Graduate Studies, University of Ruhuna, Sri Lanka

² Department of Soil Science, Faculty of Agriculture, University of Ruhuna, Sri Lanka

³ Department of Agricultural Biology, Faculty of Agriculture, University of Ruhuna, Sri Lanka

*Correspondence: lankaranawake@hotmail.com, ORCID: <https://orcid.org/0000-0003-0517-9911>

Received: 9th October 2024, Accepted: 15th December 2024, Published: 30th December 2025

Abstract In agricultural systems, mulching is important in soil conservation, moisture retention, and weed suppression, influencing crop growth and yield. This study investigates the efficacy of utilizing diverse mulching materials such as albizia sawdust, banana pseudo-stems, sunflower lopping, and gliricidia lopping in turmeric cultivation by evaluating their impact on crop yield and vegetative growth. Turmeric yield was significantly increased by gliricidia lopping (1928.4 g/plant) and albizia sawdust (1664.6 g/plant) compared to sunflower lopping (1212.8 g/plant), banana pseudo-stem (1061.9 g/plant), and the control (977.7 g/plant). All treatments showed significant positive correlations between fresh yield and the number of mother rhizomes, the number of primary and secondary fingers, and fresh canopy biomass. Only albizia sawdust did not increase plant height, but it increased the number of tillers significantly. Any mulching material did not affect the number of leaves and leaf width. The leaf blade length was significantly higher in the gliricidia lopping (64.4 cm) and banana pseudo-stem (62.2 cm). Petiole length was significantly different ($p<0.05$) between banana pseudo-stem mulch (41.6 cm) and albizia sawdust mulch (37.5 cm). The number of mother rhizomes was significantly different in all treatments compared to controls. Banana pseudo-stem mulch indicated its ineffectiveness in promoting mother rhizome production and plant elongation. All mulching materials except sunflower mulch increased the number of primary fingers, secondary fingers, canopy biomass, and fresh yield per plant. In all treatments, including the control, the number of primary and secondary fingers per plant and canopy biomass were positively and significantly correlated with fresh yield ($p=0.01$). For optimal fresh turmeric yield, it is recommended to prioritize the use of gliricidia lopping as a mulching material, given its ability to produce the highest yield and exhibit strong positive correlations with critical growth parameters such as plant height and leaf width. Albizia sawdust mulching is an effective alternative, as it resulted in comparatively high fresh yield, with no significant difference observed between its yield and that of gliricidia lopping. This indicates flexibility for farmers based on availability and cost considerations of mulching materials.

Keywords: Albizia, banana pseudo-stem, gliricidia, mulching, sunflower, turmeric

1 Introduction

Turmeric (*Curcuma longa* L.) is an herbaceous spice crop (Order: Zingiberales, Family: Zingiberaceae). Due to its anti-inflammatory and antioxidant properties, it has an

important medicinal value (Osawa *et al.* 1995, Cousins *et al.* 2007). Recent statistics on turmeric production Sri Lanka in 2020 reported a growth of 17.9% (Vidanapathirana *et al.* 2022). Still, turmeric production in the country remains inefficient and insufficient (Abeynayake *et al.* (2020).

Because turmeric is a high water-demanding crop, it is crucial to maintain sufficient soil moisture, especially during the dry season to support optimal growth and yield (Choudhary and Kumar 2019, Ramos *et al.* 2024). ‘Mulching’ is a management strategy to cover topsoil, reduce soil evaporation, and conserve moisture in the soil (Jayakumar *et al.* 2024). In moisture controlling, farmers use different types of mulching materials, including organic, such as paddy straw mulch, dry grasses, wood chips, farm residues, nutshell, and inorganic, such as perlite, pumice stone, oyster shell and shattered plastic, polythene (Kumar *et al.* 2018, Santosh *et al.* 2021). Organic mulches conserve soil moisture, suppress weeds, reduce erosion and nutrient loss, and add organic matter to the soil, while being environmentally friendly and their overall effect is improved root growth and, ultimately, higher yield (Chakraborty *et al.* 2008, Kumar *et al.* 2018, Choudhary and Kumar 2019, Syahrinudin *et al.* 2020). Furthermore, organic mulching materials effectively reduce nitrate leaching, regulate soil temperature, improve soil physical properties, and enhance soil biological activity (Bhardwaj *et al.* 2011, Iqbal *et al.* 2020). Mulching materials and their effect on plant production have been studied by many researchers (Gerhards 2018, Choudhary and Kumar 2019, Jayakumar *et al.* 2024). Further, mulching has been shown to increase yield by 44 - 46% compared to non-mulched fields, reporting the highest turmeric yield under straw mulch, followed by dry-grass mulch (Verma and Sarnaik 2006).

The cultivation of turmeric in India using Sal leaves and Sesbania leaves as mulching showed promising results with higher fresh and dry rhizome yields (Sahoo *et al.* 2015). Dry leaf mulching with N and P at 120 kg per ha and 160 kg per ha, respectively, increased the plant height and rhizome weight per plant (Sanyal and Dhar 2006). Sidhu *et al.* (2016) observed a 3.91 benefit-cost ratio in turmeric as affected by mulching over the control with no mulching. Santos *et al.* (2020) reported that an increase in growth and yield of the corn plants as affected by mulching is a result of a reduction in weed growth. Yield after two weeding rounds was similarly achieved by mulching. Manan *et al.* (2019) recommended the use of mulching material at 6 t/ha together with fertilizer to improve the yield of turmeric.

Identifying different mulching materials for turmeric cultivation is worthy of optimizing their yield while promoting soil health and sustainability. *Gliricidia (Gliricidia sepium)* is a fast-growing nitrogen-fixing leguminous tree that can provide abundant biomass for mulching (Quee *et al.* 2017, Alamu *et al.* 2023), and gliricidia leaves have allelopathic effects (Santos *et al.* 2020). Wild sunflower (*Tithonia diversifolia*) leaf biomass releases high N content by rapid decomposition (Jama *et al.* 2000, Mustonen *et al.* 2014). Further, the wild sunflower is a material that can control soil free-living nematodes (Amulu *et al.* 2021). Banana pseudo-stem mulching has been used by Gas and Yo (2024). It decomposes gradually, releasing nutrients such as potassium, nitrogen, and phosphorus into the soil, which are essential for turmeric growth and development (Anandaraj 2008, Gas and Yo 2024). Banana leaf and stem

mulch showed higher yield performances (1.6 t/ha) in garlic (Ridwan and Syam 2023). Khoso *et al.* (2021) concluded that banana leaf mulching (12 t/ha) increases cotton yield and physiological parameters by suppressing weeds.

In areas like Embilitipita and Hambantota in dry zone Sri Lanka, banana pseudo-stems are highly available as a crop residue and, thus, can be used as a mulching material in turmeric cultivation. Sawdust has been tested by several researchers as a mulching material for a variety of crops, which protects from temperature fluctuations while providing organic matter to the soil (Raman *et al.* 2004, Strik *et al.* 2017a, 2019, 2020a, Solgi *et al.* 2023, Jayaweera *et al.* 2024). Sønsteby *et al.* (2004) stated that a substantial amount of K and P increase in crop leaves due to sawdust mulching. Al-Amin *et al.* (2020) have used sawdust as an organic mulching in turmeric cultivation. Further, Islam *et al.* (2019) have mentioned that soft-wood sawdust at 3 t/ha has reduced weed density. The advantages of utilizing sawdust are its ability to retain for a long period of time as a soil cover and the high amount of C, making it less decomposable (Meas *et al.* 2024). Turmeric cultivation with straw mulch yielded 125.2 % compared to that without mulching materials (Kaur and Brar 2016). According to Indulekha and Thomas (2018), fields mulched with jack leaves had lower weeding than coconut leaves. Mulching materials such as gliricidia, wild sunflower, sawdust, and banana pseudo-stems must be tested in turmeric cultivation to investigate their efficacy in local conditions since they are abundant in different locations in Sri Lanka but have not been comparatively studied. The present study evaluated their effectiveness as mulching materials in turmeric cultivation.

Crop growth is directed by genetic components and environmental conditions (Sivakumar *et al.* 2019). Sometimes, the lowest length and the girth of rhizomes were obtained due to heritability and vigour (Kumari *et al.* 2014, Kumar 2018). The greater number of leaves has increased the tiller production and horizontal growth of rhizomes (Nandini *et al.* 2023). Rao *et al.* (2006) have reported that the high leaf area index and long-duration genotypes produced higher fresh rhizome yield over medium and short-duration genotypes (Kumar *et al.* 2015, Nandini *et al.* 2023). Gill *et al.* (1999) and Khaskhel *et al.* (2021) have mentioned that soil moisture conservation and lower soil temperature reduction by straw mulch emerge quickly and obtain taller plants having many leaves, tillers and fingers and increased germination. The present study investigated the effects of different mulching materials on the final yield of turmeric.

2 Material and Methods

2.1 Experimental location

This experiment was conducted at the Faculty of Technology, University of Ruhuna, Sri Lanka between 2021 and 2022. The field was located at 6°03'46.8" N and 80°32'29.2" E with favourable soil conditions including pH between 5.5 and 6.5, EC <4 mS/cm, and silt loam texture in Ultisol. The field belongs to low country wet zone of Sri Lanka in which annual rainfall is >2500 mm and temperature around 30 °C.

2.2 Field preparation and planting

The land was cleared, and raised beds were prepared to be 30 cm in height and the block size is 120 cm X 90 cm. A 15 cm width drainage system was installed surrounding the beds, and wooden piles were used to separate the beds, avoiding the mixing of mulching materials. Turmeric rhizome of 35-45 g, as per the recommendation of the Department of Export Agriculture, Sri Lanka, was used as the seed rhizomes. The spacing arrangement between rows and plants was 30 × 30 cm, as recommended. Fertilization was done using basal and top dressing according to the recommendation of the Department of Agriculture, Sri Lanka (20 MT/ha compost with 100 Kg/ha TSP was added before the planting as the basal dressing. The top dressing was split into two, providing 45 days and 90 days after planting. Urea at 65 Kg/ha and MOP at 100 Kg/ha). Weeding and earthing up were continued manually whenever necessary. A sprinkler system was installed, and the field was irrigated frequently.

2.3 Experimental design

This experiment consists of 4 treatments: gliricida lopping (T1), banana pseudo-stem (T2), wild sunflower lopping (T3), and albizia sawdust (T4). The control experiment was carried out without mulch (T0). Treatments were applied in a randomized complete block design with three replicates in the field, and mulching was applied as a 10 cm thick layer (Legba *et al.* 2024) in each bed immediately after planting the rhizomes. Gliricidia lopping, banana pseudo-stems, and wild sunflower lopping were collected from the Faculty of Technology field, and albizia sawdust was collected from a nearby sawmill.

2.4 Data collection and analysis

Plant growth data (plant height, number of leaves per plant, number of tillers per plant, leaf blade length, leaf width, and leaf petiole length, were collected when plants started yellowing ten months after planting (Ponnusamy 2019). Yield components (number of mother rhizomes per plant, number of primary fingers per plant, number of secondary fingers per plant, canopy biomass and fresh yield per plant) were collected at maturity when all leaves were dried eleven months after planting.

The collected data were analyzed using ANOVA, and mean separation was conducted using Duncan's Multiple Range Test (DMRT) with SPSS statistical software (SPSS Inc. 2012). Further, a Pearson's correlation analysis was conducted to investigate the relationship of each parameter with the yield.

3 Results and Discussion

The present study evaluated the effect of (gliricidia lopping, banana pseudo-stem, wild sunflower lopping, and albizia sawdust) mulching materials on turmeric yield and plant growth parameters.

3.1 Plant growth parameters

According to the results, plant height, number of tillers, leaf blade length, leaf petiole length, and canopy biomass per plant showed significant differences ($p<0.05$) among the treatments as affected by the mulching material. However, the number of leaves and leaf width were not significantly affected by the mulching material (Table 1).

Table 1: Mean values of the turmeric growth parameters and differences between the treatments as analyzed by one-way ANOVA.

Parameter*	Treatments				
	Control (T0)	Gliricidia lopping (T1)	Banana pseudo-stem (T2)	Wild sunflower lopping (T3)	Albizia Sawdust (T4)
PH (cm)	150.6 \pm 14.7 ^b	164.8 \pm 11.5 ^a	165.4 \pm 12.3 ^a	162.3 \pm 10.30 ^a	155.7 \pm 10.9 ^b
LVS	21.6 \pm 5.1 ^a	24.6 \pm 10.4 ^a	24.4 \pm 4.1 ^a	24.1 \pm 8.33 ^a	25.7 \pm 7.8 ^a
NT	4.8 \pm 2.1 ^b	5.8 \pm 1.4 ^{ab}	5.7 \pm 2.9 ^{ab}	5.7 \pm 2.22 ^{ab}	6.1 \pm 1.9 ^a
LBL (cm)	59.7 \pm 7.7 ^{bc}	64.4 \pm 7.1 ^a	62.2 \pm 6.8 ^{ab}	57.8 \pm 4.60 ^c	59.2 \pm 8.0 ^{bc}
LW (cm)	13.2 \pm 2.1 ^a	14.2 \pm 2.4 ^a	14.4 \pm 2.6 ^a	13.4 \pm 2.87 ^a	14.0 \pm 2.2 ^a
LPL (cm)	41.6 \pm 4.9 ^{ab}	42.5 \pm 7.4 ^{ab}	43.0 \pm 4.7 ^a	38.0 \pm 5.6 ^{ab}	37.5 \pm 6.4 ^b
CBM	246.0 \pm 22.8 ^{bc}	331.5 \pm 40.2 ^a	439.2 \pm 62.0 ^a	183.8 \pm 40.0 ^c	432.5 \pm 44.4 ^a

The data are the means \pm SD of three replications. Based on the DMRT, data with similar letters on the same row are not significantly different at the 5% level.

*PH: Plant Height, LVS: Number of leaves per plant, NT: Number of tillers per plant, LBL: Leaf blade length, LW: Leaf width, LPL: Leaf petiole length, CBM: Canopy biomass.

3.2 Plant height

Plant height was significantly higher in all mulching treatments compared to the control, except albizia sawdust mulch, which showed a comparatively lower effect. Among the treatments, gliricidia lopping, banana pseudo-stem, and wild sunflower lopping resulted in the most notable increases in plant height, due to their high amount of organic matter content and faster decomposition rates, which enhance nutrient availability. Several studies have found the same effect (Sanyal and Dhar 2006, Sengupta *et al.* 2009, Thankamani *et al.* 2016, Bhardwaj *et al.* 2017, Kaur and Bons 2017). Further, the effect of treatment groups of gliricidia lopping mulching (164.8 cm), banana pseudo-stem mulching (165.4 cm), and wild sunflower lopping (162.3 cm) was found to be not significantly different from each other. Quee *et al.* (2017) have suggested that the rate of leaf decomposition as the cause of plant height increase with gliricidia lopping mulching. Banana leaves and stem mulch appeared to be the best mulch type on plant height of garlic (Ridwan and Syam 2023).

3.3 Number of leaves per plant

Results of this study showed that there was no significant effect of mulching on the number of leaves per plant in turmeric ($p>0.05$). Contrast findings have been reported that number of leaves per plant has been affected by mulching application (Sengupta *et*

al. 2009, Manhas *et al.* 2011, Kumar *et al.* 2015, Bhardwaj *et al.* 2017, Kaur and Bons 2017). Mathew and Sreekala (2019) observed the same in ginger plants and Ridwan and Syam (2023) supported this for garlic.

3.4 Number of tillers per plant

The average number of tillers per plant was significantly affected by the mulching materials tested in this study ($p<0.05$). The effect of *albizia* sawdust mulching on the number of tillers per plant (6.1) was significantly higher than the control group (4.8), and it was not significantly different from other treatment groups. However, *gliricidia* lopping (5.8), banana pseudo-stem (5.7), and wild sunflower lopping (5.7) did not show a significant effect on the number of tillers per plant compared to the control.

3.5 Leaf blade length

This study shows that mulching can significantly affect the leaf blade length of turmeric plants ($p<0.05$). The effect was significantly higher in the *gliricidia* lopping (64.4 cm) and banana pseudo-stem (62.2 cm) mulching group compared to the other groups and the control (59.7 cm). All other mulching had no significant effect on leaf blade length compared to the control group. Further, the effect was insignificant among the treatments of wild sunflower lopping mulching (57.8 cm), and *albizia* sawdust mulching (59.2 cm). Bhardwaj *et al.* (2017) reported similar results.

3.6 Leaf width

The average leaf width of the turmeric plants was not affected by the mulching materials used in this study ($p>0.05$). However, Bhardwaj *et al.* (2017) reported a significant mulching effect on leaf width.

3.7 Leaf petiole length

According to the findings of this study, mulching materials significantly affected the leaf petiole length of turmeric plants ($p>0.05$). The effect was significantly different in banana pseudo-stem mulch (43.0 cm) compared to *albizia* sawdust mulch (37.5 cm), and it did not show any significant difference from other treatments. All the treatments were not significantly different compared to the control group (41.6 cm).

3.8 Canopy biomass

The average canopy biomass was significantly affected by the mulching materials in the present study ($p<0.05$). It was significantly higher in *gliricidia* lopping (331.5 g/plant), banana pseudo-stem (439.2 g/plant), and *albizia* sawdust (432.5 g/plant) mulching groups compared to the wild sunflower lopping and the control group. Plots mulched with poplar leaves significantly increased leaf, stem, and root dry biomass (Kumar *et*

al. 2015). According to the data by Kaur *et al.* (2019), straw mulch produced higher dry matter accumulation (stem plus leaves) compared to no mulch.

3.9 Yield components and final yield per plant

As presented in Table 2, mulching treatments significantly influenced key yield components of turmeric such as the number of mother rhizomes, primary fingers, and secondary fingers per plant, with notable variations observed among the different mulching materials.

Table 2: Mean values of the turmeric yield components and final yield differences between the treatments as analyzed by one-way ANOVA.

Parameter	Treatments				
	Control (T0)	Gliricidia lopping (T1)	Banana pseudo-stem (T2)	Wild sunflower lopping (T3)	Albizia Sawdust (T4)
NMR	4.3 \pm 2.0 ^b	6.3 \pm 1.4 ^a	6.3 \pm 1.1 ^a	5.8 \pm 0.9 ^a	6.0 \pm 1.7 ^a
NPF	19.9 \pm 8.6 ^b	33.9 \pm 5.2 ^a	28.8 \pm 4.3 ^a	21.7 \pm 4.70 ^b	28.2 \pm 2.4 ^a
NSF	63.1 \pm 17.3 ^d	131.4 \pm 19.7 ^a	115.8 \pm 17.8 ^{ab}	86.2 \pm 5.7 ^{cd}	102.8 \pm 4.7 ^{bc}
FYP	977.7 \pm 33.6 ^c	1928.4 \pm 93.8 ^a	1061.9 \pm 56.5 ^b	1212.8 \pm 86.2 ^c	1664.6 \pm 36.2 ^a

The data are the means \pm SD of three replications. Based on the DMRT, data with similar letters on the same row are not significantly different at the 5% level.

NMR: Number of mother rhizomes per plant, NPF: Number of primary fingers per plant, NSF: Number of secondary fingers per plant, FYP: Fresh yield per plant

3.10 Number of mother rhizomes per plant

The number of mother rhizomes per turmeric plant was significantly impacted by the mulching materials ($p<0.05$). The effect was significantly different in all groups of treatments compared to the control group (4.3), and they were statistically equivalent to each other. More potato tubers were recorded under plastic mulch over albizia sawdust, paddy straw, paddy husk, and no mulching (Bharati *et al.* 2020).

3.11 Number of primary fingers per plant

The average number of primary fingers per plant was significantly higher in all treatment groups compared to the control (19.9) as affected by the mulching materials ($p<0.05$), except wild sunflower lopping (21.7). However, the effect was not significantly different among the treatments of gliricidia lopping (33.9), banana pseudo-stem (28.8), and albizia sawdust (28.2) mulching groups. Primary rhizome yield increased with mulch and farmyard manure (Manhas *et al.* 2011).

3.12 Number of secondary fingers per plant

The number of secondary fingers per plant was significantly higher ($p<0.05$) in all treatment groups except the wild sunflower (86.2) lopping group compared to the control group (63.1). The maximum number of secondary fingers per plant was recorded during the treatments of gliricidia lopping (131.4) and banana pseudo-stem mulching (115.8), and they were not significantly different. The number of secondary fingers per plant in the banana pseudo-stem mulching group and albizia sawdust (102.8) mulching group was not significantly different from each other. Further, wild sunflower lopping did not show a significant effect compared to albizia, which sawdust mulching.

3.13 Fresh yield per plant

Fresh yield per plant was significantly higher ($p<0.05$) in gliricidia lopping (1928.4 g/plant), banana pseudo-stem (1061.9 g/plant), and albizia sawdust (1664.6 g/plant) mulching groups compared to the control (977.7 g/plant) and wild sunflower (1212.8 g/plant) lopping mulching groups. Further, they were not significantly different in banana pseudo-stem, and albizia sawdust mulching groups. However, gliricidia and albizia sawdust mulching recorded significantly equal fresh yield per plant. Therefore, it indicates that gliricidia lopping and albizia sawdust mulching are effective in increasing turmeric yield. The mulching materials significantly affected the average fresh yield per plant ($p < 0.05$), and similar findings have been reported for turmeric in other studies (Nwokocha *et al.* 2009, Lakshmi and John 2015, Manan *et al.* 2019, Santos *et al.* 2020, Davis *et al.* 2024). Mathew and Sreekala (2019) reported the same for ginger and Santos *et al.* (2020) reported the same for corn.

Table 3. Pearson correlation values between the fresh plant yield and other parameters in all treatments.

Treatment	Control	Gliricidia lopping	Banana pseudo-stem	Wild sunflower lopping	Albizia sawdust
PH	0.145	0.397*	-0.464**	-0.109	0.178
LVS	0.258	0.121	-0.136	0.326	0.125
NT	0.154	0.152	-0.135	0.366*	-0.004
LBL	0.129	0.317	-0.293	0.06	0.193
LW	0.126	0.460*	-0.243	-0.277	0.251
LPL	0.081	-0.119	-0.029	0.04	-0.089
NMR	0.727**	0.727**	0.349	0.684**	0.664**
NPF	0.755**	0.653**	0.194	0.578**	0.675**
NSF	0.771**	0.863**	0.683**	0.751**	0.869**
CBM	0.581**	0.496**	0.468**	0.542**	0.535**

PH: Plant Height, LVS: Number of leaves per plant, NT: Number of tillers per plant, LBL: Leaf blade length,

LW: Leaf width, LPL: Leaf petiole length, NMR: Number of mother rhizomes per plant,

NPF: Number of primary fingers per plant, NSF: Number of secondary fingers per plant, CBM: Canopy biomass.

*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant at the 0.01 level (2-tailed).

3.14 Correlations

The fresh yield per plant was significantly and positively correlated with the number of mother rhizomes per plant in control, gliricidia lopping, wild sunflower lopping, and albizia sawdust mulches at $\alpha=0.01$ significant level, but not in banana pseudo-stem mulch. Further, plant height showed a significant negative correlation ($r=-0.464$, $\alpha=0.01$) with fresh yield in banana pseudo-stem mulching. Mother rhizome production and plant elongation were not induced by banana pseudo-stem. The number of primary fingers per plant, secondary fingers per plant, and canopy biomass were positively and significantly correlated with the yield in all mulches and control plants at $\alpha=0.01$ significant level (Table 3). Further, the fresh yield in gliricidia lopping showed a significant positive correlation between leaf width at $\alpha=0.05$. It shows that the leaf expansion has been induced in turmeric by gliricidia lopping. Further, the number of tillers per plant in wild sunflower lopping mulching exhibited a significant positive correlation with the fresh yield of the plant ($r=0.366$, $\alpha=0.05$) (Table 3). Singh *et al.* (2018) reported significant correlations between plant height and fresh rhizome yield ($r = 0.89$) as affected by organic and inorganic sources of nitrogen in turmeric. Further, they observed positive but non-significant correlations of a number of rhizomes with all other studied parameters. However, they reported that plant height and total number of rhizomes have a non-significant correlation ($r = 0.35$).

4 Conclusions

The study demonstrated that turmeric yield was significantly enhanced by the application of gliricidia lopping and albizia sawdust, which emerged as highly effective mulching materials, whereas sunflower lopping was found to be less effective. Among these, gliricidia lopping was the most effective, and the yield increase under this treatment was strongly attributed to specific growth parameters and yield components. Under gliricidia lopping, the number of mother rhizomes, primary fingers, secondary fingers, and canopy biomass showed strong positive correlations with fresh yield, indicating that these were the most significantly contributing yield components. Additionally, leaf width and canopy biomass were the most influential growth parameters, as gliricidia mulch notably enhanced leaf expansion and aboveground biomass accumulation. This was supported by a significant positive correlation between leaf width and fresh yield ($\alpha=0.05$). Across all treatments, including the control, fresh yield consistently showed a strong positive correlation ($\alpha=0.01$) with the number of mother rhizomes, primary and secondary fingers, and canopy biomass. A particularly strong correlation between fresh yield and the number of mother rhizomes per plant was observed under gliricidia, albizia sawdust, wild sunflower, and control treatments ($\alpha=0.01$), while no such correlation was evident under banana pseudo-stem mulch. Interestingly, plant height exhibited a significant negative correlation ($r = -0.464$, $\alpha = 0.05$) with fresh yield under banana pseudo-stem mulch, suggesting its ineffectiveness in promoting productive growth. These findings emphasize that the choice of mulching

material significantly influences turmeric yield by affecting key physiological traits. Therefore, incorporating gliricidia lopping and albizia sawdust as mulching materials is recommended for enhancing turmeric cultivation through their positive effects on critical growth and yield parameters.

Acknowledgements

Authors acknowledge the critical comments from anonymous RJS reviewers.

References

Al-Amin M, Rahman MM, Islam SMA, Dhakal H, Khan MRI, Amin MR, Kabir AKMA. 2020. Effect of bulking materials over the composting of bio-slurry. *Bangladesh Journal of Animal Science* 49(2): 142-150.

Alamu EO, Adesokan M, Fawole S, Maziya-Dixon B, Mehreteab T, Chikoye D. 2023. *Gliricidia sepium* (Jacq.) Walp applications for enhancing soil fertility and crop nutritional qualities: a review. *Forests* 14(3): 635. <https://doi.org/10.3390/f14030635>

Amadi C, Olojede AO, Obasi M. 2015. Growth and yield of turmeric in a derived savanna agro-ecology of Nigeria. *International Journal of Agricultural Policy and Research* 3(11):388-395. <http://dx.doi.org/10.15739/IJAPR.065>

Amin MM, Al Minhaj A, Islam D, Bhowmik B, Hasan MM, Islam MN. 2021. Mulch and no-till impacts on nitrogen and phosphorus leaching in a maize field under sub-tropic monsoon climate. *Environmental Challenges* 5: 100346. <https://doi.org/10.1016/j.envc.2021.100346>

Amulu LU, Oyedele DJ, Adekunle OK. 2021. Effects of sun hemp (*Crotalaria juncea*) and Mexican sunflower (*Tithonia diversifolia*) leaf extracts on the development of *Meloidogyne incognita* on African indigenous vegetables. *Archives of Phytopathology and Plant Protection* 54(15-16): 1247-1260. <https://doi.org/10.1080/03235408.2021.1899371>

Anandaraj M, Johny AK, Kandiannan K. 2008. Technologies for sustainable production of turmeric *Zingiberaceous spices*. National Workshop on Zingiberaceous Spices-Meeting the Growing Demand through Sustainable Production, pp. 51-63.

Barad AV, Viradiya YA. 2023. Investigating the Influence of Rhizome Size and Treatment on Turmeric Crop Productivity (*Curcuma longa* L.). *International Journal of Environment and Climate Change* 13(8):1560-1565. 10.9734/IJECC/2023/v13i82104

Bharati S, Joshi B, Dhakal R, Paneru S, Dhakal SC, Joshi KR. 2020. Effect of different mulching on yield and yield attributes of potato in Dadeldhura District, Nepal. *Malaysian Journal of Sustainable Agriculture* 4(2): 54–58. <http://doi.org/10.26480/mjsa.02.2020.54.58>

Bhardwaj AK, Jasrotia P, Hamilton SK, Robertson GP. 2011. Ecological management of intensively cropped agro-ecosystems improves soil quality with sustained productivity. *Agriculture, Ecosystems & Environment* 140 (3-4): 419-429. <https://doi.org/10.1016/j.agee.2011.01.005>

Bhardwaj DR., Kikon G, Thakur CL, Kumar N. 2017. Effect of bamboo species and mulch materials on turmeric crop production and curcumin contents. *Indian Journal of Agroforestry* 19(2):13-22.

Brijesh H, Ajjappala B. 2023. Micropropagation strategies in medicinally important turmeric (*Curcuma* sp): Current research and future challenges. *Journal of Applied Biology and Biotechnology* 11(3):1-8. <http://dx.doi.org/10.7324/JABB.2023.65814>

Chakraborty D, Nagarajan S, Aggarwal P, Gupta VK, Tomar RK, Garg RN, Sahoo RN, Sarkar A, Chopra UK, Sarma KS, Kalra N. 2008. Effect of mulching on soil and plant water status,

and the growth and yield of wheat (*Triticum aestivum* L.) in a semi-arid environment. *Agricultural water management* 95(12):1323-1334. <https://doi.org/10.1016/j.agwat.2008.06.001>

Choudhary VK, Kumar PS. 2019. Weed suppression, nutrient leaching, water use and yield of turmeric (*Curcuma longa* L.) under different land configurations and mulches. *Journal of cleaner production* 210:795-803. <https://doi.org/10.1016/j.jclepro.2018.11.071>

Cousins M, Adelber, J, Chen F, Rieck J. 2007. Antioxidant capacity of fresh and dried rhizomes from four clones of turmeric (*Curcuma longa* L.) grown in vitro. *Industrial crops and products* 25(2):129-135.

Davis PL, Ajithkumar B, Vysakh A, Vinu K. 2024. Crop weather relationship of turmeric under different mulching practices: Crop weather relationship of turmeric. *Journal of AgriSearch* 11(01): 26-30. <https://doi.org/10.21921/jas.v11i01.14769>

Dhillon BS, Bhullar MS. 2014. On-farm weed control in turmeric (*Curcuma longa* L.). *Ecology, Environment and Conservation* 20(1):137-138.

Gas B, Yo O. 2024. Effect of Planting and Mulching Materials on Growth and Yield of White Yam (*Dioscorea rotundata*) in Ikorodu, Lagos State, Nigeria. *Journal of Experimental Agriculture International* 46(4):110-116. <https://doi.org/10.9734/jeai/2024/v46i42346>

Gerhards R. 2018. Weed suppression ability and yield impact of living mulch in cereal crops. *Agriculture* 8(3):39. <https://doi.org/10.3390/agriculture8030039>

Gill BS, Randhawa RS, Randhawa GS, Singh J. 1999. Response of turmeric (*Curcuma longa* L.) to nitrogen in relation to application of farmyard manure and straw mulch. *Journal of spices and aromatic crops* 8(2):211-214.

Indulekha VP, Thomas CG. 2018. Utilization of water hyacinth as mulch in turmeric. *Journal of Tropical Agriculture* 56(1). <https://jtropag.kau.in/index.php/ojs2/article/view/628>

Iqbal R, Raza MAS, Valipour M. 2020. Potential agricultural and environmental benefits of mulches—a review. *Bulletin National Research Center* 44:75. <https://doi.org/10.1186/s42269-020-00290-3>

Islam AKMM, Hasan MM, Yeasmin S, Abedin MA, Kader MA, Rashid MHO, Anwar MP. 2019. Bioassay screening of tropical tree sawdust for allelopathic properties and their field performance against paddy weeds. *Fundamental and Applied Agriculture* 4(3):906–915. <https://doi.org/10.5455/faa.54326>

Jama B, Palm CA, Buresh RJ, Niang AL, Gachengo C, Nziguheba G, Amadalo B. 2000. *Tithonia diversifolia* as a green manure for soil fertility improvement in western Kenya: a review. *Agroforestry systems* 49:201-221. <https://doi.org/10.1023/A:1006339025728>

Jayakumar M, Bosu SS, Kantamaneni K, Rathnayake U, Surendran U. 2024. Drip irrigation on productivity, water use efficiency and profitability of turmeric (*Curcuma longa*) grown under mulched and non-mulched conditions. *Results in Engineering* 22:102018. <https://doi.org/10.1016/j.rineng.2024.102018>

Jayaweera WMCS, Ranawake AL, Amarasinghe SR. 2024. Effect of paddy straw, paddy husk, and cinnamon residue as mulching in turmeric (*Curcuma longa* L.) cultivation in low country wet zone in ultisols. *Journal of Agricultural Sciences* 18(22): 30-42. <https://doi.org/10.4038/agrieast.v18i2.135>

Kadam JH, Kamble BM. 2020. Effect of organic manures on growth, yield and quality of turmeric (*Curcuma longa* L.). *Journal of Applied and Natural Science* 12(2):91-97. <https://doi.org/10.31018/jans.vi.2249>

Kaur A, Brar AS, Brar AS. 2019. To evaluate the effect of mulch, Irrigation methods and schedules on yield and quality of turmeric (*Curcuma longa*). *Pharmacognosy Journal* 8:1822–1829.

Kaur A, Brar AS. 2016. Influence of mulching and irrigation scheduling on productivity and water use of turmeric (*Curcuma longa* L.) in north-western India. *Irrigation Science* 34:261–269. <https://doi.org/10.1007/s00271-016-0501-0>

Kaur J, Bons HK. 2017. Mulching: A viable option to increase productivity of field and fruit crops. *Journal of Applied and Natural Science* 9:974–982. <https://doi.org/10.31018/jans.v9i2.1306>

Khaskheli FIK, Rahman A, Shah N, Magsi WA. 2021. Mulching effect on seed germination, seedling rot disease, cotton wilt, and seed cotton yield of Cotton (*G. hirsutum* L.). *Journal of Current Opinion in Crop Science* 2(1):134-137.

Khoso AH, Buriro M, Laghari N, Qambrani MA, Ditta A, Saeed M, Nawaz T. 2021. Comparative efficacy of different mulching materials to enhance growth and development and to control weed infestation in cotton crop. *Pakistan Journal of Weed Science Research* 27(4): 475.

Kotikal YK, Kulkarni KA. 2000. Incidence of insect pests of turmeric (*Curcuma longa* L.) in northern Karnataka, India. *Journal of Spices and Aromatic crops* 9(1): 51-54.

Kumar A, Anan, R, Singh I, Rawat P, Tewari SK. 2018. Performance of turmeric (*Curcuma longa* L.) and soil characteristics under different agroforestry tree species in Uttarakhand, India. *Journal of Pharmacognosy and Phytochemistry* 7(5): 2150-2154.

Kumar R, Sharma S, Sood S, Prasad R, Dubey Y.P. 2015. Bioorganic Nutrient Source Effect on Growth, Biomass, and Quality of Natural Sweetener Plant Stevia and Soil Fertility in the Western Himalayas. *Commun. Soil Science and Plant Analysis* 46: 1170–1186. <https://doi.org/10.1080/00103624.2015.1033545>

Kumara RPDN, De Silva CS. 2019. The Efficacy of Different Mulching Materials in Influencing Growth, Yield, Soil and Quality Parameters of Ginger Cultivated in Low Country Intermediate Zone (IL1) of Sri Lanka. *OUSL Journal* 14: 7-29.

Kumari S, Singh P, Kewat RN. 2014. Comparisons of bioactive compounds in different cultivars of turmeric grown in eastern UP. *International Journal of Scientific and Research Publications* 4(8): 1-4.

Lakshmi PS, John J. 2015. Allelopathic effect of leaf lopping of homestead trees on turmeric (*Curcuma longa* Linn.). *Journal of Tropical Agriculture* 53(2): 227–232.

Legba EC, Dossou L, Honfoga J, Odjo S, Ramasamy S. 2024. Organic mulching. CIMMYT & World Vegetable Center. <https://hdl.handle.net/10883/34644>

Manan J, Sharma M, Kaur A. 2019. Outcome of Mulching and Phosphatic fertilizer on Germination and Yield of Turmeric. *Journal of Krishi Vigyan* 7(2): 273-275.

Manhas SS, Gill BS, Khajuria V, Kumarp S. 2011. Effect of planting material, mulch and farmyard manure on weed density rhizome yield and quality of turmeric (*Curcuma longa*). *Indian Journal of Agronomy* 56: 393–399.

Meas A, Wi E, Chang M, Hwang HS. 2024. Carboxymethyl cellulose produced from wood sawdust for improving properties of sodium alginate hydrogel in dye adsorption. *Separation and Purification Technology* 341:126906. <https://doi.org/10.1016/j.seppur.2024.126906>

Rao M, Rao VP, Reddy NY. 2006. Growth analysis and curcumin content of long, medium and short duration turmeric (*Curcuma longa* L.) genotypes. *Journal of Spices and Aromatic Crops* 15(1): 42-47. <https://core.ac.uk/download/pdf/236023486.pdf>

Mathew SM, Sreekala GS. 2019. Effect of mulch and nutrients on growth and yield in transplanted ginger. *Indian Journal of Agricultural Research* 53(6): 693-697.

Mendonça SR, Ávila MCR, Vital RG, Evangelista ZR, de Carvalho PN, dos Reis Nascimento A. 2021. The effect of different mulching on tomato development and yield. *Scientia Horticulturae* 275:109657. <https://doi.org/10.1016/j.scienta.2020.109657>

Mirjanaik RH, Vishwanath YC. 2020. Advances in production technology of turmeric. *Journal of Pharmacognosy and Phytochemistry* 9(4): 1198-1203.

Mulumba LN, Lal R. 2008. Mulching effects on selected soil physical properties. *Soil and Tillage Research* 98(1):106-111. <https://doi.org/10.1016/j.still.2007.10.011>

Mustonen PSJ, Oelbermann M, Kass DCL. 2014. Response of the common bean (*Phaseolus vulgaris* L.) to *Tithonia diversifolia* (Hamsl.) Gray biomass retention or removal in a slash and mulch agroforestry system. *Agroforestry Systems* 88:1–10. <https://doi.org/10.1007/s10457-013-9650-9>.

Nair KP. 2019. Diseases of Turmeric. In: Turmeric (*Curcuma longa* L.) and Ginger (*Zingiber officinale* Rosc.) - World's Invaluable Medicinal Spices. Springer, Cham. <https://doi.org/10.1007/978-3-030-29189-1-10>

Nandini GS, Bn MP, Dhananjaya BN. 2023. Performance evaluation of selected turmeric (*Curcuma longa* L.) landraces prevailed in Karnataka (India) for growth, yield and quality attributes. *The Pharma Innovation* 12(1): 342-349. <https://doi.org/10.22271/tpi.2023.v12.i1d.18007>

Nwokocha CC, Mbagwu CC, Olojede JSC, Ano AO. (2009). Mulching an arsenic hapludult in southeastern Nigeria: Effects on selected soil properties and rhizome yield of turmeric. *Agro-Science* 8(3). <https://doi.org/10.4314/as.v8i3.51731>

Osawa T, Sugiyama Y, Inayoshi M, and Kawakishi, S., 1995. Antioxidative activity of tetrahydrocurcuminoids. *Bioscience, Biotechnology, and Biochemistry* 59(9):1609-1612. <https://doi.org/10.1271/bbb.59.1609>

Ponnusamy J. 2019. Lakadong turmeric. *Kerala karshakan e-journal* 26-28: June 2019. <https://www.researchgate.net/publication/334398327>

Quee DD, Mansaray A, Kanneh SM, Kamanda PJ, Conteh AR, Ndoko EJ, Serry K. 2017. Effect of *Gliricidia sepium* Leaf Mulch on Weed Growth and Productivity of Maize (*Zea mays* L.) in Southern Sierra Leone. *International Journal of Agricultural and Biological Engineering* 7: 35–41.

Raman R, Kuppuswamy G, Krishnamoorthy R (2004) Effect of mulching on the growth and yield of cotton. *Journal of Ecobiology* 16:275–278.

Ramos TB, Darouich H, Pereira LS. 2024. Mulching effects on soil evaporation, crop evapotranspiration and crop coefficients: a review aimed at improved irrigation management. *Irrigation Science* 1-15. <https://doi.org/10.1007/s00271-024-00924-8>

Ridwan I, Syam A. 2023. Growth and production of garlic (*Allium sativum* L.) in the lowland on various types of mulch. In *IOP Conference Series: Earth and Environmental Science* 1230(1)-012221. IOP Publishing. [10.1088/1755-1315/1230/1/012221](https://doi.org/10.1088/1755-1315/1230/1/012221)

Sahoo SK, Dwibedi SK, Nath JN, Behera M. 2015. Effect of organic cultivation and mulching on improved varieties of turmeric. *Journal of Agricultural & Veterinary Science* 8(3):15-17.

Sahoo SK, Debnath S, Maitra S. 2020. Mulching: Materials, advantages and crop production. *Protected Cultivation and Smart Agriculture*; Maitra, S., Gaikwad, DJ, Tamoy, S., Eds, pp. 55-66.

Salim R, El-Halawa RA. 2002. Efficiency of dry plant leaves (mulch) for removal of lead, cadmium and copper from aqueous solutions. *Process Safety and Environmental Protection* 80: 270–276. <https://doi.org/10.1205/095758202762277632>

Santos LEBD, Oliveira VRD, Oliveira AKD. 2020. Branches of *Gliricidia sepium* used as mulch for weed control in corn. *Revista Ciência Agronômica* 51: e20186564. <https://doi.org/10.5935/1806-6690.202000017>

Santosh DT, Mandal D, Tiwari KN. 2021. Yield and quality response of turmeric (*Curcuma longa*) under drip irrigation and plastic mulch. *Research on Crops* 22(4): 959-967.

<https://doi.org/10.31830/2348-7542.2021.157>

Sanyal D, Dhar PP. 2006. Effects of mulching, nitrogen and potassium levels on growth, yield and quality of turmeric grown in red lateritic soil. XXVII International Horticultural Congress - IHC2006: International Symposium on Asian Plants with Unique Horticultural Potential. *ISHS Acta Horticulturae* 769: 769:137–140.
<https://doi.org/10.17660/ActaHortic.2008.769.17>

Sengupta DK, Maity TK, Dasgupta B. 2009. Effect of mulching on ginger (*Zingiber officinale* Rose) in the hilly region of Darjeeling district. *International Journal of Agriculture and Biology* 11(2):124.

Sidhu PS, Brar AS, Dhillon GS, Deol NS. 2016. Yield and economics of turmeric (*Curcuma longa* L.) influenced by mulching, spacing and intercropping with green gram (*Vigna radiata*). *International Research Journal of Agricultural Economics and Statistics* 7(2): 153-158. <https://doi.org/10.15740/HAS/IRJAES/7.2/153-158>.

Singh D, Kumar R, Walia SS, Brar AS. 2018. Correlation and regression studies of yield and yield components as influenced by organic and inorganic sources of nitrogen in turmeric. *Annals of Agricultural Research- New Series* 39(4): 420-424 (2018) S.

Sivakumar V, Umajyothi K, Dorajerao AVD, Umakrishna K. 2019. Genetic variability, heritability and genetic advance as per cent mean in turmeric (*Curcuma longa* L.) genotypes. *Journal of Pharmacognosy and Phytochemistry* 8(1):1799-1801.

Solgi A, Cerdà A, Masumian A, Rabiee MRS, Behjou FK, Vojoodi RG. 2023. Effectiveness of Sawdust and Rice Straw Mulch Strips to Control Runoff and Sediment Yield in Skid Trails. *Forest Science* 69(5):580-590. <https://doi.org/10.1093/forsci/fxad023>

Sønsteby A, Nes A, Måge F. 2004. Effects of bark mulch and NPK fertilizer on yield, leaf nutrient status and soil mineral nitrogen during three years of strawberry production. *Acta Agriculturae Scandinavica Section B-Soil & Plant Science* 54(3): 128-134.
<https://doi.org/10.1080/09064710410030276>.

SPSS Inc. 2012. IBM SPSS Software for Windows, version 20.0.

Strik BC, Vance DRA, Bryla, Sullivan DM. 2017. Organic production systems in northern highbush blueberry: Impact of planting method, cultivar, fertilizer, and mulch on yield and fruit quality from planting through maturity. *HortScience* 52:1201–1213. <https://doi.org/10.21273/HORTSCI12179-17>.

Strik BC, Vance DRA, Bryla, Sullivan DM. 2019. Organic production systems in northern highbush blueberry: II. Impact of planting method, cultivar, fertilizer, and mulch on leaf and soil nutrient concentrations and relationships with yield from planting through maturity. *HortScience* 54:1777–1794. <https://doi.org/10.21273/HORTSCI14197-19>.

Strik BC, Davis AJ, Bryla DR, Orr ST. 2020. Individual and combined use of sawdust and weed mat mulch in a new planting of northern highbush blueberry I. Impacts on plant growth and soil and canopy temperature. *HortScience* 55:1280–1287.
<https://doi.org/10.21273/HORTSCI15122-20>.

Syahrinudin S, Denich M, Becker M, Hartati W, Vlek PL. 2020. Biomass and carbon distribution on *Imperata cylindrica* grasslands. *Biodiversitas Journal of Biological Diversity* 21(1). <https://doi.org/10.13057/biodiv/d210111>

Thankamani CK, Kandiannan K, Hamza S, Saji KV. 2016. Effect of mulches on weed suppression and yield of ginger (*Zingiber officinale* Roscoe). *Scientia Horticulturae* (Amsterdam) 207:125–130. <https://doi.org/10.1016/j.scienta.2016.05.010>

Verma AVA, Sarnaik DA. 2006. Effect of different types of mulches on growth and yield of turmeric (*Curcuma longa* L.). *International Journal of Agricultural Sciences* 2(2): 425-426.

Vidanapathirana NP, Subasinghe S, Sunil K, Ketipearachchi KG, Siriwardana AJMCM, and Bandusekara BS. 2022. Growth and yield performances of turmeric (*Curcuma longa*) grown

in dry zone of Sri Lanka as affected by planting space, growing media and shade, *Journal of Agro-Technology and Rural Sciences* 1(2): 27-31. <http://doi.org/10.4038/atrjs.v1i2.32>

Wali AS, Kabura BH. 2014. Correlation studies in tomato (*Lycopersicon lycopersicum* L. Karst) as affected by mulching and cultivar during the heat period in the Semi-Arid Region of Nigeria. *International Letters of Natural Sciences* 10:1-7.