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Abstract In this study, the Lagrange’s equations of motion for a 2D double 

spring-pendulum with a time dependent spring extension have been derived 

and solved approximately. The resulting equations are also solved 

numerically using Maple, and plots of motion for the pendulum bobs m1 

and m2 are presented and compared. It was observed that motion along the 

x-axis is characterized by sine wave function while motion along y-axis is 

characterized by cosine wave function with slightly changing amplitudes. 

Change in stiffness constant, angle of deflection, mass of pendulum bob and 

spring length were found to have significant effect on the dynamics of the 

double spring-pendulum. The periodic and chaotic behaviour noticed in this 

study is consistent with current literature on spring-pendulum systems. 

Keywords: Lagrange equations, double spring-pendulum. 

1   Introduction 

The two dimensional (2D) double pendulum is a typical example of chaotic 

motion in classical mechanics. The pattern of its motion is well known to 

change drastically as the energy is increased from zero to infinity (Biglari and 

Jami 2016). However, at low and very high energies the system represents 

coupled harmonic oscillators, and can be considered as an integrable system. 

But, at intermediate energies, the system is known to exhibit chaotic features. 

Double spring-pendulum is a classical mechanical system consisting of 

two bobs of mass m1 and m2 fixed to the ends of two weightless elastic springs 

with stiffness constants k1 and k2, and the angle of deflections 1q  and 2q , 

respectively. The second spring is connected to the first mass as shown in Fig. 

1.  

The dynamics of double spring-pendulum appears to be scanty in 

literature, though there are reports on single and double spring pendulum 

systems. Marcus et al. (2016) studied the order-chaos-order transition of 

http://doi.org/10.4038/rjs.v10i2.78
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spring pendulum using the Hamiltonian formulation. Numerical analysis of 

the equations of motion for double pendulum was reported by Smith (2002) 

using Maple soft. de Sousa et al. (2017) reported on the energy distribution in 

spring pendulum. Lewin et al. (2015) numerically analyzed the dynamics of 

single and double pendulum using MATLAB. Also, double pendulum 

numerical analysis with Lagrangian and Hamiltonian equations of motions 

using MATLAB was reported by Biglari and Jami (2016). Despite these 

studies, no reports to the best of my knowledge have been made on double 

spring-pendulum with time dependent extension in spring length using 

Lagrangian formulations. 

Also, it is well known that physical systems can be described by their 

Lagrangian, and from the Lagrangian function one can obtain second order 

differential equations of motion describing such dynamic systems. In most 

cases the exact solution cannot be obtained for these Lagrange equations of 

motion, and this leads to employing alternative numerical approach to solve 

such equations (Baleanu et al. 2015). 

The interest in this study is to analytically obtain the equations of motion 

for a double spring-pendulum with time dependent spring-extension. Hence, 

Lagrangian formulation of mechanics is used to derive the equations of 

motion for the system. The resulting Lagrange’s equations are solved 

approximately and numerically using MAPLE software. 

 

 
 

Fig. 1. Schematic diagram of a double spring-pendulum 

2 Derivation of the Lagrange’s equations of motion 

Suppose the positions of mass m1 and m2 at any time in space is expressed in 

Cartesian coordinates as (x1, y1) and (x2, y2),  unstretched lengths of the 
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springs are l1 and l2, and the springs extend by 1(t) and 2 (t)  when the 

respective masses are attached as shown in Figure 1.   

At the point of suspension, the positions of the bobs are given by the 

following equations: 

1 1 1 1( ) ( ( ))sin ( )x t l t q t         (1) 

1 1 1 1( ) ( ( ))cos ( )y t l t q t         (2) 

2 1 1 1 2 2 2( ) ( ( ))sin ( ) ( ( ))sin ( )x t l t q t l t q t        (3) 

2 1 1 1 2 2 2( ) ( ( ))cos ( ) ( ( ))cos ( )y t l t q t l t q t         (4) 

 

The total kinetic energy (T) of the system is given by: 

   2 2 2 2

1 1 1 2 2 2

1 1
( ) ( ) ( ) ( )

2 2
T m x t y t m x t y t        (5)  

 

 

2 2 2

1 1 1 1 1

2 2 2 2 2 2

1 2 1 1 1 2 2 2

2 1 2 1 1 2 2 1 2 1 2

2 2 1 2 1 1

1
( , , , ) ( ) ( ( )) ( )

2

( ) ( ) ( ( )) ( ) ( ( )) ( )
1

       2 ( ) ( ) 2( ( ))( ( ) ( ) ( ) cos( )
2

2( ( ) ( ) ( ) 2( ( )

T q q m t l t q t

t t l t q t l t q t

m t t l t l t q t q t q q

l t t q t l t

   

   

   

  

   

    

    

    2 1 1 2( ) ( ) sin( )t q t q q

 
 
 
 

 

         (6) 

 

By taking a plane at distance (l1+l2) below the point of suspension of 

Figure 1 as a reference level, the potential (V) energy of the system is then 

given by: 

 

 

1 1 2 1 1 1

2 1 2 1 1 1 2 2 2

2 2

1 1 2 2

( , ) ( ( ))cos ( )

                ( ( ))cos ( ) ( ( ))cos ( )

1 1
               ( ) ( )

2 2

V q m g l l l t q t

m g l l l t q t l t q t

k t k t

 

 

 

    

     



               (7) 

  

From this, the Lagrangian function for the system is given by: 

 

  

 

2 2 2 2 2 2 2

1 1 1 1 1 2 1 2 1 1 1

2 2

2 2 2 1 2 1 1 2 2 1 2 1 2

1 1
( , , , ) ( ) ( ( )) ( ) ( ) ( ) ( ( )) ( )

2 2

                        ( ( )) ( )+ 2 ( ) ( ) 2( ( ))( ( ) ( ) ( ) cos( )

             

L T V

L q q m t l t q t m t t l t q t

l t q t t t l t l t q t q t q q

      

    

 

      

     

  
  



2 2 1 2 1 1 2 1 1 2

1 1 2 1 1 1 2 1 2 1 1 1

2

2 2 2 1 1

           2( ( ) ( ) ( ) 2( ( ) ( ) ( ) sin( )

                        ( ( ))cos ( ) ( ( ))cos ( )

1
                        ( ( ))cos ( ) (

2

l t t q t l t t q t q q

m g l l l t q t m g l l l t q t

l t q t k t

   

 

 

    

       

   2

2 2

1
) ( )

2
k t

  (8) 
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The Lagrange’s equations (Murray 1967, Goldstein et al. 2000, Martin and 

Salomonson 2009) associated with the generalized coordinates 1 2( ),  ( ),  q t q t

1( ),t
 
and 2 ( )t  are given by: 

1 1 2 2

1 1 2 2

0,         0,   

0,        0 .

d L L d L L

dt q q dt q q

d L L d L L

dt dt   

          
          

          

          
          

          

   (9) 

 

Now differentiating equation (8) accordingly, and substituting into equation 

(9) gives four Lagrange’s equations of motion for the system; one equation for 

each degree of freedom (i.e., 1 2 1 2,  ,   and q q   ). They are as follows:  

1 2 1 1 1 2 2 2 1 2 2 2 1 2 2

2

1 2 1 1 1 1 2 2 2 1 2 1

2 1 2 2 2 1

( )( ( )) ( ) ( ( ))cos( ) ( ) sin( ) ( )

               2( )( ( )) ( ) ( ) ( ( ))sin( ) ( )

                  2 cos( ) ( ) ( )

m m l t q t m l t q q q t m q q t

m m l t t q t m l t q q q t

m q q t q t m m

  

  



      

      

    2 1sing q

     (10) 

 

2 2 2 2 2 1 2 1

2

2 1 2 1 1 2 1 1 1 2 1

2 2 2 2 2 2 2

( ( )) ( ) sin( ) ( )

          2 cos( ) ( ) ( ) ( ( )sin( ) ( )

              2 ( ( )) ( ) ( ) sin

m l t q t m q q t

m q q t q t m l t q q q t

m l t t q t m g q

 

 

 

  

     

  

                 (11) 

 

   

  

    

2 2 2 1 2 2 1 2 1 2 1 2 2

2

2 1 2 2 2 1 2 1 1 1

2

2 2 2 1 2 2 1 1 2 1 1

( ) sin( ) ( ) ( ) cos( ) ( )

             2 sin( ) ( ) ( ) ( ) ( )

                 ( ) 1 cos( ) ( ) cos cos ( )

m l t q q q t m m t m q q t

m q q t q t m m l t q t

m l t q q q t m g q q k t

  

 

 

     

     

      

    (12) 

 

 

    
2 1 1 1 2 1 2 1 2 1 2 2

2

2 1 2 1 1 2 2 2 1 1 1 2 1

2 2 2 2

( ) sin( ) ( ) cos( ) ( ) ( )

               2 sin( ) ( ) ( ) ( ) ( ) cos( ) ( ) 

                   cos ( )

m l t q q q t m q q t m t

m q q t q t m l t l t q q q t

m g q k t

  

  



     

      

 

 (13) 

 

Equations (10) – (13) represent a pair of coupled second order differential 

equations describing the unconstrained motion of a double spring-pendulum. 

Generally, equations of motion can be represented in matrix form as: 

 

1 2( ) ( ) ( ) ( )Mp t c p t c p t f t          (14) 

 

Where, c1 and c2 are the damping coefficient and stiffness matrices. 

Rearranging equation (14), one obtains the mass matrix M and rest matrix R 

in the representation given by equation (15):  

 

( ) ( )Mp t R t         (15) 
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where: 

 
1( ) ( )p t M R t        (16) 

and 

 

1

2

1

2

( )

q

q
p t





 
 
 
 
 
 

       (17) 

Substituting equations (10), (11), (12) and (13) into (15), we obtain 

   

 

1 2 1 1 2 2 2 1 2 2 1 2

2 2 2 2 1 2

2 2 2 1 2 1 2 2 1 2

2 1 1 1 2 2 1 2 2

( )( ( )) ( ( ))cos( ) sin( )0

( ( )) sin( )0 0

( ) sin( ) cos( )0

( ) sin( ) 0 cos( )

m m l t m l t q q m q q

m l t m q q

M

m l t q q m m m q q

m l t q q m q q m

 







      
 
 
  
 

  
    
 
 
      

 (18) 

  

1

2

1

2

( )

q

q
p t





 
 
 
 
 
 

      (19) 

 

 

2

1 2 1 1 1 1 2 2 2 1 2 1 2 1 2 2 2

1 2 1

2 1 2 1 1 2 1 1

2( )( ( )) ( ) ( ) ( ( ))sin( ) ( ) 2 cos( ) ( ) ( )

                                                            sin

2 cos( ) ( ) ( ) ( ( )s

m m l t t q t m l t q q q t m q q t q t

m m g q

m q q t q t m l t

R

   

 

       

 

   



     

2

1 2 1 2 2 2 2 2

2 2

2 2

2 1 2 2 2 1 2 1 1 1 2 2 2 1 2 2

in( ) ( ) 2 ( ( )) ( ) ( )

                                                       sin

2 sin( ) ( ) ( ) ( ) ( ) ( ) 1 cos( ) ( )

                 

q q q t m l t t q t

m g q

m q q t q t m m l t q t m l t q q q t

 

  

  



        

 

    

1 1 2 1 1

2

2 1 2 1 1 2 2 2 1 1 1 2 1 2 2 2 2

                             cos cos ( )

2 sin( ) ( ) ( ) ( ) ( ) cos( ) ( ) cos ( )

m g q q k t

m q q t q t m l t l t q q q t m g q k t



   

 
 
 
 
 
 
 
 
 
 
 
 

   
 
 
         

 (20) 

The matrix equations in (18), (19) and (20) represent a four dimensional 

system of equations of motion for the double spring-pendulum in generalized 

coordinates: 1 2 1 2,  ,   and q q   . The size of the mass matrix M is 4 x 4 and 

that of the rest matrix R is 4 x 1. 

     The coupled second order differential equations can only be solved 

approximately (Murray, 1967). Considering a case where 
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1 2 1 2 1 2,   ,   m m m l l l         and 
1 2 ,k k  these equations simplifies 

to the following: 

 

 

1 1 2 2 1 2 2

2

1 1 2 2 1 2 1 1 2 2 2 1

2( ( )) ( ) ( ( ))cos( ) ( ) sin( ) ( )

 4( ( )) ( ) ( ) ( ( ))sin( ) ( ) 2cos( ) ( ) ( ) 2 sin

l t q t l t q q q t q q t

l t t q t l t q q q t q q t q t g q

  

   

     

        
   (21) 

 

2 1 2 1

2

1 2 1 1 1 2 1 2 2 2

( ( )) ( ) sin( ) ( )

  2cos( ) ( ) ( ) ( ( )sin( ) ( ) 2( ( )) ( ) ( ) sin

l t q t q q t

q q t q t l t q q q t l t t q t g q

 

   

  

        
 (22) 

 

 

      

1 2 2 1 1 2 2 1 2 2 2

2 2

1 1 2 2 1 2

( ) sin( ) ( ) 2 ( ) cos( ) ( ) 2sin( ) ( ) ( )

      2 ( ) ( ) ( ) 1 cos( ) ( ) cos cos ( )

l t q q q t t q q t q q t q t

k
l t q t l t q q q t g q q t

m

   

  

      

        

 (23) 

 

 

    

1 2 1 1 2 1 2

2

1 2 1 1 1 2 1 2

( ) sin( ) ( ) cos( ) ( ) ( )

   2sin( ) ( ) ( ) ( ) ( ) cos( ) ( ) cos ( )

l t q q q t q q t t

k
q q t q t l t l t q q q t g q t

m

  

   

     

        

 (24) 

These equations can be solved exactly for small angle of deflection. For 

small oscillations, we use the approximations: 

 
1 2 1 2 1 2sin( ) ,   cos( ) 1,q q q q q q     and neglecting terms involving 

2,  q q , in equations (21) – (24), we get   

 

1 2 1 2 2 12( ( )) ( ) ( ( )) ( ) ( ) ( ) 2l t q t l t q t q q t gq            (25) 

2 1 2 1 2( ( )) ( ) ( ) ( )l t q t q q t gq           (26)

  1 2 2 1 2( ) ( ) ( ) 2 ( ) ( ) 2 ( )
k

l t q q q t t t g t
m

            (27) 

  1 2 1 1 2( ) ( ) ( ) ( ) ( ) ( )
k

l t q q q t t t g t
m

             (28) 

From equations (25) and (26), we have that: 

 

 

1 2 2

1 2

2 1 2 1

1 2

1
( ) ( ( )) ( )

( )

1
( ) 2( ( )) ( ) ( ( )) ( ) 2

( )

t l t q t gq
q q

t l t q t l t q t gq
q q

 

  


  



    


  (29) 

Substituting equation (29) into equations (27) and (28), and neglecting 

terms involving  
22

1 2 1 2,  ,  q q q q q , we get 
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   1 2 1 22 ( ) ( ) ( ) ( ) ( )( )
k

l t q t l t q t t q q
m

           (30) 

  1 1 1 22 ( ) ( ) ( )( )
k

l t q t gq t q q
m

          (31) 

The normal frequencies and normal modes that correspond to small 

oscillations for the double spring-pendulum is calculated from equations (30) 

and (31) by using equation (32) 

 

1 1 2 2,    i t i tq Ae q A e   .       (32) 

Substituting the derivatives of (32) into (30) and (31), and simplifying 

gives 

   2 2

1 22 ( ) ( ) ( ) ( ) 0
k k

l t t A l t t A
m m

     
   

        
   

  (33) 

  2

1 22 ( ) ( ) ( ) 0
k k

l t g t A t A
m m

   
  

      
  

   (34) 

In order for A1 and A2 to be non-zero, we must set the determinant of the 

coefficients equal to zero. That is,  

   

 

2 2

2

2 ( ) ( ) ( ) ( )

0

2 ( ) ( ) ( )

k k
l t t l t t

m m

k k
l t g t t

m m

     

   

 
     

 


 
   

 

  (35) 

or     
2 4 22 0

k k
l l g g

m m
     

 
      

 
. On solving this 

equation, we get 
2

2

8

4( )

k k k
g g g

m m m

l

  




   
      

   



    (36) 

Using the positive and negative parts of 2  in equation (36), the normal 

frequencies are given by  
1

22

1
1

8
1

2 2 4( )

k k k
g g g

m m m
f

l

  


  

 
          

    
   


 
 
 

,   (37) 
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and 
1

22

2
2

8
1

2 2 4( )

k k k
g g g

m m m
f

l

  


  

 
          

    
   


 
 
 

   (38) 

Substituting the positive part of equation (36) into equation (34) gives 

1 2
2

8

k

mA A

k k k
g g g

m m m



  





   
       
   

    (39) 

Equation (39) corresponds to the normal mode in which the bobs of mass 

m1 and m2  are moving in opposite directions. This is called the anti-symmetric 

mode. 

Also, substituting the negative part of equation (36) into equation (34) 

gives 

1 2
2

8

k

mA A

k k k
g g g

m m m



  



   
      

   

    (40) 

This corresponds to the normal mode in which the bobs are moving in the 

same directions. 

3   Numerical solution 

Maple software (Maple, 2018) is used to numerically solve the set of 

second order differential equations given by the Lagrange’s equations of 

motion. In order to perform numerical analysis for the system, first the 

position coordinates (x1, y1, x2, y2) are defined. Thereafter, Maple performs the 

following tasks for the system: 

 Calculates time derivatives 1 1 2 2( ,  ,  ,  )x y x y  of the position 

coordinates. 

 Evaluates kinetic energy for the system. 

 Evaluates potential energy for the system with reference to distance 

below the point of suspension. 

 Obtains the Lagrangian function from the difference between kinetic 

and potential energies. 



 N.O. Nenuwe                                                 Application of Lagrange equations to double spring-pendulum 

Ruhuna Journal of Science 

Vol 10(2): 120-134, December 2019 
128 

 Evaluates the derivatives: 

 1 2 1 2 1 2 1 2

,  ,  ,  ,  ,  ,  ,  
L L L L L L L L

q q q q   

       

        .  
 Calculates the Lagrange’s equations associated with the generalized 

coordinates 1 2 1 2,  ,  ,  q q   .  

 Numerically solves the Lagrange’s equations associated with 

1 2 1 2,  ,  ,  q q    for different values of m1, m2, g, k1 , k2, L1 and L2. 

New parameters (X1, Y1, X2, Y2) were defined to calculate the positions of 

the two masses m1 and m2 in the xy plane. 

Finally, the software evaluates these new parameters and the results are 

used to plot variation in position of pendulum bobs (m1 and m2) with respect 

to time along the x- and y-axis, respectively. 

Due to space constraints, the Maple commands are not displayed here but 

can be viewed as supplementary files attached to this article. Only motions of 

the pendulum bobs (m1 and m2) are displayed in Fig. 2 for 𝑔 = 9.8,   𝑘1 = 𝑘2 =
0.01,   𝐿1 = 𝐿2 = 0.5,  𝑚1 = 𝑚2 = 0.1,  𝑞1 = 𝑞2=1,  𝜇1 = 𝜇2 = 0.05. 

 

 

  
Fig. 2. Comparison between the motions of mass m1 and m2 along the (a) 

horizontal and (b) vertical planes. 

 

Figure 2 represents variation in position of the pendulum bobs m1 and m2 

with respect to time along the x- and y-axis. The plots show sinusoidal curves 

that are continuous and periodic with slightly changing amplitudes. Figure 

2(a) is characteristics of a sine wave function while Figure 2(b) is 

characteristics of a cosine wave function. The slightly varying amplitudes 

observed in the curves might be as a result of the chaotic nature of single and 

double spring-pendulum. Figure 2 shows comparison of the motion of 

pendulum bob m1 and m2. It is observed that the amplitudes of the curves 

representing motion for m1 are smaller than those of motion for m2 as 

displayed by Figures 2(a) and 2(b), respectively. 
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Furthermore, we studied the behaviour of the pendulum bobs for: 

1 2 1 2 1 2,  , ,k k q q m m    and 1 2L L . For 2 1,k k  curves representing the 

motion of the pendulum bobs are shown in Figures 3(a) and (b). When k1 is 

fixed at 0.01, and the stiffness constant of the second spring (k2) is increased 

from 0.05 to 1, we observed that the two bobs are in phase, periodic and the 

amplitudes are suppressed as displayed in Figures 3(a) and (b). This is an 

indication of a non-chaotic regime. Furthermore, the wave forms of the two 

bobs along the x-plane (X1, X2, X3, X4, X5 and X6) are seen to diverge as 

they progress with time.  

 

  

 
 

Fig. 3. Motion of inner and outer bob along the horizontal and vertical planes for 

𝒈 = 𝟗. 𝟖, 𝑳𝟏 = 𝑳𝟐 = 𝟎. 𝟓, 𝒎𝟏 = 𝒎𝟐 = 𝟎. 𝟏, 𝒒𝟏 = 𝒒𝟐=1 and  𝝁𝟏 = 𝝁𝟐 = 𝟎. 𝟎𝟓 where 

(a) and (b) for 𝒌𝟐 > 𝒌𝟏, and (c) and (d) for 𝒌𝟏 > 𝒌𝟐. 

 

In Figures 3(a & b): X1, X2, Y1 and Y2 represent motions of pendulum bob 

(1&2) along the x- and y-plane for 1 20.01  and  0.05k k  . X3, X4, Y3 and 

Y4 represent motions of bobs along the x- and y-plan for 𝑘1 = 0.01 and 𝑘2 =
0.5, and X5, X6, Y5 and Y6 represent motions of bobs along the x- and y-
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plane for 1 20.01  and  1k k  . In Figures 3(c & d): X1, X2, Y1 and Y2 

represent motions of pendulum bobs for 1 20.05  and  0.01k k  . X3, X4, Y3 

and Y4 represent motions of bobs for 1 20.5  and  0.01k k  , and X5, X6, Y5 

and Y6 represent motions of bobs for 1 21  and  0.01k k  . 

 

      

For 1 2k k , the motions of the bobs are displayed in Figures 3(c & d). As the 

stiffness constant of the first spring k1 is increased from 0.05 to 1 with k2 fixed 

at 0.01, we entered a non-periodic regime. This can be likened to increase in 

energy that gives rise to quasi-periodic regime as reported by Biglari and Jami 

(2016). This is clearly seen in the curves associated with the motion of the 

inner bob m1 along both x and y planes as shown in Figures 3(c & d). 

However, we observed that for the curves representing the outer pendulum 

bob m2 along the vertical plane are periodic with negative values.  

 
 

 
 

 
Fig. 4. Motion of the inner and outer bob along the horizontal and vertical planes 

for 𝒈 = 𝟗. 𝟖, 𝑳𝟏 = 𝑳𝟐 = 𝟎. 𝟓, 𝒎𝟏 = 𝒎𝟐 = 𝟎. 𝟏, 𝒌𝟏 = 𝒌𝟐 = 𝟎. 𝟎𝟏 and  𝝁𝟏 = 𝝁𝟐 =
𝟎. 𝟎𝟓 where (a) and (b) for 𝒒𝟏 > 𝒒𝟐, and (c) and (d) for  𝒒𝟐 > 𝒒𝟏. 
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Also, keeping the angle of displacement q2 fixed at 1, and increasing q1 

(=3, 4.5, 4.7), we observed a chaotic behaviour and as well the amplitudes are 

suppressed as shown in Figure 4(a). While for curves representing positions of 

the inner and outer bobs along the y plane show only slight variation in 

amplitude (see Figure 4(b)).  

In Figures 4(a & b): X1, X2, Y1 and Y2 represent motions of pendulum 

bob (1&2) along the x- and y-plane for 1 23  and  1q q  . X3, X4, Y3 and Y4 

represent motions of bobs along the x- and y-plane for 1 24.5  and  1q q  , 

and X5, X6, Y5 and Y6 represent motions of bobs along the x- and y-plane for 

1 24.7  and  1q q  . In (c & d): X1, X2, Y1 and Y2 represent motions of 

pendulum bobs for 1 21  and  0.5q q  . X3, X4, Y3 and Y4 represent motions 

of bobs for 1 21  and  1.5q q  , and X5, X6, Y5 and Y6 represent motions of 

bobs for 1 21  and  2q q  . 

Increasing  𝑞2 (= 0.5, 1.5, 2) with q1 fixed, we noticed the two bobs do not 

move together, amplitudes of the graphs are suppressed and there exist quasi-

periodic behaviour indicating a chaotic regime as displayed in Figure 4(c). In 

addition, when the mass of the outer pendulum bob m2 is fixed at 0.05 and m1 

is increased from 0.1 to 2, we noticed from Figure 5(a) that the two bobs do 

not move together along the x plane. Again this indicates the presence of 

chaos; as such X1, X2, X3, X4, X5 and X6 are out of phase. But, in Figure 

5(b) the two bobs are in phase and periodic along the y plane. Also, we 

observed that the amplitudes of the graphs have a tendency to increase with 

mass. On the other hand, when m1 is fixed and m2 is varied, one noticed from 

Figures (c & d), that the bobs move together along both axes. Nevertheless, 

there are indications of the presence of chaos on the graphs X1, X3, X5 and 

X7 as m2 is increased from 0.1 to 2. 

In Figures 5 (a & b): X1, X2, Y1 and Y2 represent motions of pendulum 

bob (1&2) along the x- and y-plane for 1 20.1  and  0.05m m  . X3, X4, Y3 

and Y4 represent motions of bobs along the x- and y-plane for 

1 20.5  and  0.05m m  , and X5, X6, Y5 and Y6 represent motions of bobs 

along the x- and y-plane for 1 21  and  0.05m m  . X7, X8, Y7 and Y8 

represent curves for bobs along the x- and y-plane for 1 22  and  0.05m m  . 

In (c & d): X1, X2, Y1 and Y2 represent curves for pendulum bobs along the 

x- and y-plane for 1 20.05  and  0.1m m  . X3, X4, Y3 and Y4 represent 

curves for bobs along the x- and y-plane for 𝑚1 = 0.05  and  𝑚2 = 0.5. X5, 

X6, Y5 and Y6 represent curves for bobs along the x- and y-plane for 

1 20.05  and  1m m  , and X7, X8, Y7 and Y8 represent curves for bobs 

along the x- and y-plane for 1 20.05  and  2m m  . 
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Finally, increasing the length of the inner or outer spring has significant 

effect on the motion of the pendulum bobs. Keeping L1 fixed and increasing 

the length of the outer spring L2, or keeping L2 fixed and increasing the length 

of the inner spring L1, we observed that the inner and outer pendulum bobs do 

not move together along the x plane as shown in Figures 6 (a & c). Hence, 

signifies the existence of a chaotic regime. On the other hand, along the y 

plane the two bobs are in phase and periodic showing there is no chaos along 

this plane. This periodic and chaotic behaviour is consistent with previous 

studies on spring-pendulum systems (Lewin and Chen 2015, Carretero-

Gonzalez et al. 1994, Leah 2013, Nunez-Yepez et al. 1990). 

 

 

  

  
 

Fig. 5. Motion of the inner and outer bob along the horizontal and vertical planes 

for𝑔 = 9.8, 𝐿1 = 𝐿2 = 0.5, 𝑞1 = 𝑞2 = 1, 𝑘1 = 𝑘2 = 0.01 and  𝜇1 = 𝜇2 = 0.05 where 

(a) and (b) for 𝑚1 > 𝑚2, and (c) and (d) for 𝑚2 > 𝑚1. 
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In Figures 6 (a & b): X1, X2, Y1 and Y2 represent motions of pendulum 

bobs (1&2) along the x- and y-plane for 1 22  and  0.5L L  . X3, X4, Y3 and 

Y4 represent motions of bobs along the x- and y-plane for 

1 25  and  0.5L L  , and X5, X6, Y5 and Y6 represent motions of bobs along 

the x- and y-plane for 1 210  and  0.5L L  . In (c & d): X1, X2, Y1 and Y2 

represent motions of pendulum bobs for 1 20.5  and  2L L  . X3, X4, Y3 and 

Y4 represent motions of bobs for
1 20.5  and 5L L  , and X5, X6, Y5 and Y6 

represent motions of bobs for
1 20.5  and 10L L  . 

 

 
 

  
 

Fig. 6. Motion of the inner and outer bob along the horizontal and vertical planes 

for 𝒈 = 𝟗. 𝟖, 𝒎𝟏 = 𝒎𝟐 = 𝟎. 𝟏, 𝒒𝟏 = 𝒒𝟐 = 𝟏, 𝒌𝟏 = 𝒌𝟐 = 𝟎. 𝟎𝟏 and  𝝁𝟏 = 𝝁𝟐 = 𝟎. 𝟎𝟓 

where (a) and (b) 𝑳𝟏 > 𝑳𝟐, , and (c) and (d) 𝑳𝟐 > 𝑳𝟏. 
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4 Conclusions 

Equations of motion for the 2D double spring-pendulum with time dependent 

spring extension are derived using Lagrangian formulation of mechanics in 

generalized coordinates and are solved approximately. These equations were 

also solved numerically with Maple and it was observed that motion along the 

x-axis is characterized by a sine wave curve while motion along the y-axis is 

characterized by a cosine wave curve. Change in stiffness constant, angle of 

deflection, mass of pendulum bob and spring length were found to have 

significant effect on the dynamics of a 2D double spring-pendulum. The 

periodic and chaotic behaviour noticed in this study is consistent with current 

literature on spring-pendulum systems. 
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