
RUHUNA JOURNAL OF SCIENCE

Vol 10(2): 161-173, December 2019

eISSN: 2536-8400 ©Faculty of Science

DOI: http://doi.org/10.4038/rjs.v10i2.81 University of Ruhuna

© Faculty of Science, University of Ruhuna,

Sri Lanka

161

Short Paper

A novel and efficient approach for line segment clipping

against a convex polygon

K. R. Wijeweera1, 4*, S. R. Kodituwakku2, 4, M. A. P. Chamikara2, 3

1Department of Computer Science, Faculty of Science, University of Ruhuna, Sri Lanka
2 Department of Statistics and Computer Science, Faculty of Science, University of Peradeniya,

Sri Lanka
3School of Computer Science and Information Technology, Royal Melbourne Institute of

Technology, Australia
4Postgraduate Institute of Science, University of Peradeniya, Sri Lanka

*Correspondence: krw19870829@gmail.com; https://orcid.org/0000-0002-8933-1687

Received: 07th August 2018, Revised: 20th November 2019, Accepted: 03rd December 2019

Abstract: This paper proposes a new line clipping algorithm against a

convex polygon with 𝑂(𝑁) time complexity. The line segment is pruned

against each extended edge of the polygon as the first step of the proposed

algorithm. Then, the pruning process gives accurate outcomes for completely

inside and partially inside line segments only. The algorithm was developed

based on the observation that the endpoints of completely outside line

segments coincide after the pruning process. Theoretical and experimental

comparisons of the current algorithm against existing ones reveal that it is

faster than the Cyrus Beck algorithm but is slower than ECB, Rappaport, and

Skala algorithms.

Keywords: Computer Graphics Programming, Line Clipping Algorithms,

Computational Geometry, Convex Analysis, Time Complexity.

1 Introduction

Generally, any approach that extracts parts of a picture that are either inside

or outside of a specified region of space is called a clipping algorithm. The clip

window is defined as the region against which an object is clipped. There are

many applications of clipping algorithms: extracting part of a defined scene for

viewing; identifying visible surfaces in three-dimensional views; antialiasing

line segments or object boundaries; creating objects using solid modeling

procedures; displaying a multi-window environment; drawing and painting

operations that allow parts of a picture to be selected for copying, moving,

http://doi.org/10.4038/rjs.v10i2.81
https://orcid.org/0000-0002-8933-1687

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
162

erasing, or duplicating. The clip window can be a general polygon or it can even

have curved boundaries depending on the application. The clipping algorithms

are basically used for clipping the following primitive types: point clipping, line

clipping (straight line segments), area clipping (polygons), curve clipping, and

text clipping. The graphics packages usually include line and polygon clipping

methods as standard components. In addition many graphics packages facilitate

curved objects, specially spline curves and conics, such as circles and ellipses.

An alternative way to handle curved objects is to approximate them with

straight line segments and apply the line clipping or polygon clipping methods

(Hearn and Baker 1998).

There are several algorithms in literature to clip line segments against a

convex polygon (Skala 1994). These algorithms have been derived from well-

known Cohen Sutherland (Cohen 1969), Liang Barsky (Liang and Barsky 1983,

1984), and Cyrus Beck (Cyrus and Beck 1978) algorithms. Let N be the number

of vertices of the convex polygon. All of the existing algorithms have O (N)

time complexity except the algorithms proposed by Rappaport and Skala. The

Rappaport algorithm and Skala algorithm have O (log N) time complexity

(Rappaport 1991). The speed of these algorithms depends on more or less clever

implementation of tests and intersection computation. The ECB line clipping

algorithm was invented by observing the convexity feature of the clipping

polygon and the possibility of binary search usage over polygon vertices (Skala

1993). Skala further improved the ECB line clipping algorithm using the known

order of vertices of the polygon to an O (log N) algorithm (Skala 1994).

The Cohen Sutherland algorithm is a well-known algorithm for clipping line

segments against a rectangular window (Cohen 1969). The original paper

describes the algorithm when the edges of the rectangular window are parallel

to the principle axes. The extended edges of the rectangular window partition

the plane into nine regions. Each region is assigned a region code of four bits

as shown in Figure 1.

Fig. 1. The nine region codes

The region codes of each endpoint of the line segment are computed first. It can

be decided whether the line segment is completely inside by performing

operator OR between the two region codes. If not, the line segment is tested for

being completely outside by performing operator AND between the two region

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
163

codes. If the line segment is neither completely inside nor completely outside,

then only intersections are calculated with the extended edges of the clipping

window. This process is iterated until the final outcome is reached. The

geometric transformations are used when the edges of the rectangular window

are not parallel to the principle axes. The system is rotated so that the edges

become parallel to the principle axes. Then the original algorithm can be used

to clip the line segment. Again, the system is re-rotated to get the actual

endpoints of the clipped line segment. These geometric transformations involve

a higher computational cost due to the use of trigonometric functions. The

number of regions generated by the extended edges depends on the angles

between the edges and the number of vertices when the clipping window is a

polygon. Therefore, the known algorithms for line clipping against a polygon

do not use the tests similar to the Cohen Sutherland algorithm (Skala 1994).

It is necessary to distinguish cases where line segments intersect a given

window from those where line segments do not intersect the window in order

to develop an effective line clipping algorithm. The Cyrus Beck algorithm

performs direct computation of intersection points to solve this problem. The

ECB algorithm was developed by using the separation theorem. However, the

ECB algorithm does not use the known order of vertices of the given polygon

and achieves O (N) time complexity (Skala 1994). The Rappaport algorithm is

based on the known fact that whether a given point inside the convex polygon

can be found in O (log N) time (Preparata and Shamos 1985). The other O (log

N) algorithm proposed by Skala can be applied in situations where the edges of

the convex polygon are arbitrarily oriented.

This paper proposes a novel line segment clipping algorithm extending a

concept proposed earlier (Kodituwakku et al. 2012, 2013) to a convex polygon.

The proposed algorithm takes O (N) time and does not use the property of

known order of vertices of the polygon.

2 Material and Methods

This section presents the proposed line clipping algorithm. A convex polygon

is considered as the clipping window. The vertices of the convex polygon have

been labeled as shown in Figure 2.

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
164

Fig 2. A general convex polygon clipping window

The convex polygon has n vertices: A0, A1…, An-1. They form the polygon by

connecting each vertex and its subsequent vertex with straight line segments as

shown in Figure 1. Finally, A0 and An-1 are also connected to form the closed

polygon. Note that the interior angle at each vertex is less than π and non-

consecutive edges do not intersect. Here, A0 ≡ (x[0], y[0]), A1 ≡ (x[1], y[1])…,

An – 1 ≡ (x[n - 1], y[n - 1]).

2.1 Mathematical background of the proposed algorithm

The general equation of a straight line can be expressed as y = m * x + c. End

points of the line segment to be clipped are A = (x1[0], y1[0]) and B = (x1[1],

y1[1]), and m1 and c1 are considered as gradient and y-intercept of the line

segment respectively.

Then the mean (xc, yc) of the vertices of the polygon can be calculated as

given below.

𝑥𝑐 =
∑ 𝑥[𝑖]𝑛−1

𝑖=0

𝑛
; 𝑦𝑐 =

∑ 𝑦[𝑖]𝑛−1
𝑖=0

𝑛

Let m[i] and c[i] be the gradient and the y-intercept of the line segment AiAi+1

respectively; where i = 0…, (n – 1). Then m[i] can be expressed as m[i] =

(y[i+1] - y[i])/(x[i+1] - x[i]); where i = 0…, (n – 1). Note that the index

arithmetic is modulo n.

By substituting m[i] in y[i] = m[i] * x[i] + c[i], c[i] can be computed as c[i]

= ((x[i+1] * y[i]) - (x[i] * y[i+1]))/(x[i+1] - x[i]); where i = 0…, (n - 1).

Similarly, m1 and c1 (gradient and y-intercept respectively) of the line

segment to be clipped are also calculated.

Let val[i] = m[i] * xc – yc + c[i]; and val1[i][j] = m[i] * x1[j] - y1[j] + c[i]

where i = 0…, (n – 1); j = 0, 1.

In this method, the following two theorems are used (Green 1991).

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
165

Theorem 1: In a convex polygon, the mean of all vertices is always inside the

polygon.

Theorem 2: Let (p, q) and (r, s) be two points and a * x + b * y + c = 0 be an

equation of a straight line. If the value of (a * p + b * q + c) * (a * r + b * s + c)

is negative, then the two points are in the opposite sides of the straight line.

Therefore, val[i] * val1[i][j] < 0 implies that the point (x1[j], y1[j]) is in the

opposite side of the centroid with respect to ith polygon boundary where i = 1,

2…, (n - 1); j = 0, 1 and only in this case the intersection point of the line

segment with the ith boundary has to be calculated.

Fig 3. Intersection calculation

As shown in Figure 3, suppose (x[0], y[0]) is outside the polygon. Then the

equation of the ith boundary of the polygon is y = m[i] * x + c[i]. The equation

of the line segment is y = m1 * x + c1. By solving these two equations, we can

get the intersection point (x_intersection, y_intersection). Then the resultant

line segment is the line segment joining (x[1], y[1]) and (x_intersection,

y_intersection).

By applying intersection calculation, the line segment can be pruned with

respect to each extended edge of the polygon so that it is will eventually end up

as the final version. If the above procedure is performed to a completely outside

line segment, it would become a single point theoretically. However, the

resultant two endpoints are approximately equal due to the precision error

occurs in calculation of intersection points. Therefore, completely outside line

segments can be easily removed by using this fact (Kodituwakku et al. 2012,

Kodituwakku et al. 2013).

2.2 Pseudo code of the proposed algorithm

All the symbols used in the following pseudo code have been considered in the

previous sections. To increase the understandability of the pseudo code, the

cases given below have been ignored from it.

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
166

Case 1: Line segment is just a point.

Case 2: Line segment is parallel to the principle axes.

Case 3: Polygon boundaries are parallel to the principle axes.

Case 4: Line segment is parallel to some of the boundaries of the polygon.

Above four cases have been addressed at the implementation stage. Then the

abstract pseudo code is as follows.
L1: BEGIN

L2:

L3: // Calculate val[i] and val1[i][j]

L4: For j = 0 to j = 1

L5: For all the i boundaries of the polygon

L6: If (val[i] * val1[i][j] < 0) Then

L7: //Calculate (x_intersection, y_intersection)

L8: x[j] = x_intersection;

L9: y[j] = y_intersection;

L10: EndIf

L11: EndFor

L12: EndFor

L13:

L14: // Initial line is completely outside

L15: If (x[0] - x[1] < 1) AND (x[1] - x[0] < 1) Then

L16: // Do nothing

L17: Else

L18: /*Save the line with end points (x[0], y[0]), (x[1], y[1])*/

L19: EndIf

L20:

L21: END

When the line segment is completely outside, applying the FOR loops makes it

a single point theoretically. Since computers truncate latter part of decimals,

testing the exact equality is not possible. Therefore, approximate equality

should be tested (Line L15). If the distance between x-coordinates are less than

one-pixel length, we can consider those two points are equal. Therefore, if the

points (x[0], y[0]) and (x[1], y[1]) are equal,

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑥[0], 𝑥[1]) < 1 → |𝑥[0] − 𝑥[1]| < 1 → (𝑥[0] − 𝑥[1]) < 1 𝐴𝑁𝐷 (𝑥[1] − 𝑥[0]) < 1

3 Results & Discussion

The proposed algorithm is developed so that it can be used for any polygon

with any number of vertices. In order to simplify the analysis, a pentagon is

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
167

used as the clipping window. How a line segment is clipped against the

pentagon window for all possible cases is explained below.

Case 1: Line segment that is completely inside as shown in Figure 4.

Fig 4. Line segment is completely inside.

Consider point A:

val[i] * val1[i][A] < 0 → false; i = 0, 1, 2, 3, 4. (Line L6)

Therefore, the initial position of A is not changed.

Consider point B:

val[i] * val1[i][B] < 0 → false; i = 0, 1, 2, 3, 4. (Line L6)

Therefore, the initial position of B is not changed.

(x[A] - x[B] < 1) AND (x[B] - x[A] < 1) → false. (Line L15)

Therefore, the line segment with the end points A and B is drawn. (Line L18)

Case 2: Line segment which is completely outside as shown in Figure 5.

Fig 5. Line segment is completely outside

Consider point A:

val[0] * val1[0][A] < 0 → true. (Line L6)

Therefore, A → A’. (Line L8 & Line L9)

val[1] * val1[1][A’] < 0 → true. (Line L6)

Therefore, A’ → A’’. (Line L8 & Line L9)

val[i] * val1[i][A’’] < 0 → false; i = 2, 3, 4. (Line L6)

Consider point B:

val[0] * val1[0][B] < 0 → false. (Line L6)

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
168

val[1] * val1[1][B] < 0 → true. (Line L6)

Therefore, B → B’. (Line L8 & Line L9)

val[i] * val1[i][B’] < 0 → false; i = 2, 3, 4. (Line L6)

(x[A’’] - x[B’] < 1) AND (x[B’] - x[A’’] < 1) → true. (Line L15)

Therefore, the line segment is ignored. (Line L16)

Case 3: Line segment which intersects the clipping window as shown in Figure

6.

Fig 6. Line segment is intersecting the boundaries

Consider point A:

val[0] * val1[0][A] < 0 → true. (Line L6)

Therefore, A → A’. (Line L8 and Line L9)

val[i] * val1[i][A’] < 0 → false; i = 1, 2, 3, 4. (Line L6)

Consider point B:

val[i] * val1[i][B] < 0 → false; i = 0, 1. (Line L6)

val[2] * val1[2][B] < 0 → true. (Line L6)

Therefore, B → B’. (Line L8 and Line L9)

val[i] * val1[i][B’] < 0 → false; i = 3, 4. (Line L6)

(x[A’] - x[B’] < 1) AND (x[B’] - x[A’] < 1) → false. (Line 15)

Therefore, the line with the end points A’ and B’ is drawn. (Line 18)

Case 4: Line segment which is partially inside the clipping window as shown

in Figure 7.

Fig 7. Line segment is partially inside

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
169

Consider point A:

val[i] * val1[0][i] < 0 → false; i = 0, 1, 2, 3, 4, 5, 6. (Line L6)

Therefore, the initial position of A is not changed.

Consider point B:

val[0] * val1[0][B] < 0 → true. (Line L6)

Therefore, B → B’. (Line L8 and Line L9)

val[1] * val1[1][B’] < 0 → true. (Line L6)

Therefore, B’ → B’’. (Line L8 and Line L9)

val[i] * val1[i][B’’] < 0 → false; i = 2, 3, 4. (Line L6)

(x[A] - x[B’’] < 1) AND (x[B’’] - x[A] < 1) → false. (Line 15)

Therefore, the line with the end points A and B’’ is drawn. (Line 18)

The proposed algorithm was compared against algorithms: Cyrus Beck,

ECB, Rappaport, and Skala in order to validate the performance. The

algorithms: Cyrus Beck and ECB have O (N) time complexity while the

algorithms: Rappaport and Skala have O (log N) time complexity (Skala 1994).

The time complexity of a line clipping algorithm is determined as the time taken

to clip a given line segment against a polygon with N number of vertices. The

line segment is tested against each edge of the polygon considering each end

point of the line segment. Therefore, the time complexity of the proposed

algorithm is O (N) + O (N) = O (N). Theoretical analysis proves that the

proposed algorithm has the same speed as the algorithms: Cyrus Beck and ECB

while it is slower than the algorithms: Rappaport and Skala.

Theoretical time complexity compares the algorithms for large values of N.

However, polygonal clip windows with small number of vertices are also used

in practice (Hearn and Baker 1998). An experimental analysis was performed

in order to compare the behavior of the proposed algorithm with the existing

algorithms for convex polygons with small number of vertices. All the

algorithms were implemented in C programming language with following

hardware and software resources.

Computer: Intel(R) Pentium(R) Dual CPU; E2180 @ 2.00 GHz; 2.00 GHz,

0.98 GB of RAM;

IDE: Turbo C++; Version 3.0; Copyright(c) 1990, 1992 by Borland

International, Inc;

A pentagon window with vertices (200, 50), (400, 100), (300, 400), (150,

350) and (50, 250) was used (vertices are in boundary traversal order). Random

points were generated by using the randomize () and random (double r)

functions. Those random points were generated in the range of 0-550. They

were used as the end points of line segments. Then the number of clock cycles

consumed to clip 108 of such random line segments by each algorithm was

counted. This procedure was repeated for 10 rounds where a new set of random

line segments was used for each round. The results obtained are shown in Table

1. For an example, in the first round CB, ECB, Rapport, Skala, and Proposed

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
170

algorithms consumed 4020, 3350, 3095, 2610, and 3762 clock cycles

respectively.

Table 1: The number of clock cycles to clip against pentagon window

Round CB ECB Rappaport Skala Proposed

1 4020 3350 3095 2610 3762

2 4021 3351 3094 2611 3761

3 4020 3351 3096 2610 3763

4 4022 3352 3095 2612 3761

5 4020 3351 3095 2611 3760

6 4020 3350 3094 2610 3762

7 4021 3351 3094 2611 3761

8 4021 3352 3095 2611 3762

9 4021 3350 3096 2612 3763

10 4020 3351 3094 2610 3762

Let T be the average number of clock cycles consumed by a given algorithm

from the ten rounds given in the Table 1. Let’s define coefficients of

effectiveness [2] v as v1 = TCB/TPro; v2 = TECB/TPro; v3 = TRap/TPro; v4 = TSka/TPro.

Consider v = TAlg1/TAlg2 for the two algorithms Alg1 and Alg2. Thus, 𝑣 ⋚ 1

gives a measure of effectiveness (in the sense of running time) of Algorithm 1

against Algorithm 2.

According to the values in the Table 1, v1 = 1.06, v2 = 0.89, v3 = 0.82, v4 =

0.69. Therefore, the proposed algorithm is 6% faster than Cyrus Beck

algorithm, 11%, 18% and 31% slower than ECB, Rapport and Skala algorithms

respectively for a pentagon window. Further, the proposed algorithm was

compared against the existing algorithms using the set of polygons shown in

Table 2. Note that Pn denotes a polygon with n number of vertices and the

vertices are shown in boundary traversal order.

Table 2: The set of polygons.

Polygon Vertices

P3 (100, 100), (300, 150), (500, 400)

P4 (200, 100), (300, 200), (200, 400), (100, 200)

P5 (200, 50), (400, 100), (300, 400), (150, 350), (50, 250)

P6 (100, 50), (150, 50), (400, 300), (350, 430), (90, 350), (50, 250)

P7 (100, 400), (250, 450), (450, 400), (500, 350), (400, 100), (200, 50), (50, 300)

P8 (100, 400), (250, 400), (400, 300), (500, 150), (200, 50), (150, 50), (60, 100), (50,

300)

P9 (150, 440), (300, 450), (400, 420), (500, 370), (350, 100), (250, 10), (100, 10),

(10, 120), (50, 400)

Next, a number of different polygons as shown in Table 2 were considered. The

same strategy was performed without changing other conditions. Performance

measures are listed in Table 3 and a comparison is shown in Figure 8.

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
171

Table 3: The number of clock cycles to clip against polygon windows

Fig 8. The number of clock cycles to clip against polygon windows

According to the results in Table 3 along with Figure 8, the proposed algorithm

is faster than Cyrus Beck algorithm. Further, the proposed algorithm is faster

than ECB algorithm when the number of vertices of the polygon is less than 5.

The proposed algorithm is slower than the other existing algorithms.

4 Conclusions

A new algorithm of O (N) time complexity for clipping line segments against

a convex polygon was proposed. The proposed algorithm was compared against

the existing algorithms both theoretically and experimentally. The proposed

algorithm is faster than Cyrus Beck algorithm and it is slower than ECB,

Rappaport, and Skala algorithms.

The existing four algorithms can handle convex polygons only and they fail

to handle arbitrary polygons (Skala 1993). The notions used in the algorithms

Polygon CB ECB Rappaport Skala Proposed v1 v2 v3 v4

P3 3405 3825 2884 2530 3364 1.01 1.13 0.85 0.75

P4 3661 3735 3403 2860 3595 1.01 1.03 0.94 0.79

P5 4020 3351 3095 2610 3762 1.06 0.89 0.82 0.69

P6 4317 3597 2853 2398 3964 1.08 0.9 0.71 0.6

P7 4704 3590 2716 2283 4116 1.14 0.87 0.65 0.55

P8 4919 4031 3034 2447 4288 1.14 0.94 0.7 0.57

P9 5424 4140 3015 2432 4485 1.2 0.92 0.67 0.54

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
172

restrict them to convex polygons. The proposed algorithm computes the

centroid of the polygon and considers that the centroid is inside the polygon.

The centroid of an arbitrary polygon may be outside the polygon. Therefore,

the proposed algorithm is also restricted to convex polygons. If a polygon

contains a reflex vertex then it is not a convex polygon. The reflex vertices of

a given polygon can be easily found (Wijeweera and Kodituwakku 2016). Thus,

convex polygons can be identified. There are algorithms to partition an arbitrary

polygon into a set of convex polygons (Wijeweera and Kodituwakku 2017). If

a line segment needs to be clipped against an arbitrary polygon then the polygon

could be partitioned into a set of convex polygons as the first step. The line

segment could be clipped against each convex polygon and the set of derived

clipped line segments could be merged to generate the final outcome. Thus, the

proposed approach could be used to clip line segments again an arbitrary

polygon as well.

The time complexities of the proposed algorithm and the Cyrus Beck

algorithm are equal. However, the proposed algorithm consumes smaller

number of clock cycles than the Cyrus Beck algorithm according to the

experimental results. The Cyrus Beck algorithm computes all the intersection

points to select the actual intersection point. In contrast, the proposed algorithm

can early exit and avoid unnecessary intersection calculations (See Figure 5 and

Figure 6). Therefore, the proposed algorithm is faster than the Cyrus Beck

algorithm in practice.

Acknowledgements

Two anonymous reviewers are acknowledged for providing critical comments on the

initial and revised versions of the manuscript.

References

Cohen D. 1969. Incremental methods for computer graphics. PhD Thesis, University of Harvard,

Massachusetts.

Cyrus M, Beck J. 1978. Generalized two and three-dimensional clipping. Computers & Graphics

3(1): 23-28.

Green SL. 1991. Advanced level pure mathematics. North Point, Hong Kong: University Tutorial

Press.

Hearn D, Baker MP. 1998. Computer graphics: c version, 2nd Edition. Prentice Hall, Inc. Upper

Saddle River. 224-237.

Kodituwakku SR, Wijeweera KR, Chamikara MAP. 2012. An efficient line clipping algorithm

for 3D space. International Journal of Advanced Research in Computer Science and Software

Engineering 2 (5): 96-101.

Kodituwakku SR, Wijeweera KR, Chamikara MAP. 2013. An efficient algorithm for line

clipping in computer graphics programming. Ceylon Journal of Science (Physical Sciences)

17: 1-7.

Liang YD, Barsky BA. 1983. An analysis and algorithms for polygon clipping. CACM 26 (11):

868-876.

K.R.Wijeweera et al. Line segment clipping against a convex polygon

Ruhuna Journal of Science

Vol 10(2): 161-173, December 2019
173

Liang YD, Barsky BA. 1984. A new concept and method for line clipping. ACM Transactions

on Graphics 3 (1): 1-22.

Preparata PF, Shamos MI 1985. Computational geometry: an introduction. Springer-Verlag, New

York.

Rappaport A. 1991. An efficient algorithm for line and polygon clipping. The Visual Computer

7 (1): 19-28.

Skala V. 1993. An efficient algorithm for line clipping by convex polygon. Computers &

Graphics 17 (4): 417-421.

Skala V. 1994. O (lg N) line clipping algorithm in E2. Computers & Graphics 18 (4): 517-524.

Wijeweera KR, Kodituwakku SR. 2016. Accurate, simple, and efficient triangulation of a

polygon by ear removal with lowest memory consumption. Ceylon Journal of Science 45 (3):

65-76.

Wijeweera KR, Kodituwakku SR. 2017. Convex partitioning of a polygon into smaller number

of pieces with lowest memory consumption. Ceylon Journal of Science 46 (1): 55-66.

Appendix

The implementation of the proposed algorithm in C# programming language is

available as an appendix to the paper.

